
California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.CS.1 Select and operate
computing devices
that perform a
variety of tasks
accurately and
quickly based on
user needs and
preferences.

People use computing devices to perform a variety of tasks accurately and
quickly. Computing devices interpret and follow the given instructions literally.
Students select and operate an appropriate computing device and
corresponding program or app for a given task.

For example, students could use computing devices to describe what plants
and animals (including humans) need to survive. In this case, students could
choose to use a keyboard to type explanatory sentences onto graphics. They
could also choose to use a touchscreen device with a stylus to annotate an
image for a slideshow, or choose to use a camera enabled device to make a
video. Student choices may reflect their own needs or the needs of others.
(CA NGSS: K-LS1-1; 2-LS4-1)

Alternatively, students could choose to use a computing device with audio
recording capabilities to recount stories or poems. Students could clarify
thoughts, ideas, or feelings via their preference of either using a device with
digital drawing tools, or by creating paper and pencil drawing based on their
needs and preferences. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5)

Computing
Systems

Devices Inclusion 1.1

K-2 K-2.CS.2 Explain the
functions of
common hardware
and software
components of
computing systems.

A computing system is composed of hardware and software. Hardware
includes the physical components of a computer system. Software provides
instructions for the system. These instructions are represented in a form that a
computer can understand and are designed for specific purposes. Students
identify and describe the function of hardware, such as desktop computers,
laptop computers, tablet devices, monitors, keyboards, mice, trackpads,
microphones, and printers. Students also identify and describe common
software applications such as web browsers, games, and word processors.

For example, students could create drawings of a computing system and label
its major components with appropriate terminology. Students could then
explain the function of each component. (VAPA Visual Arts 2 5.0) (CA CCSS
for ELA/Literacy SL.K.5, SL.K.6, SL.1.5, SL.1.6, SL.2.5, SL.2.6)

Alternatively, students could each be assigned a component of a computing
system and arrange their bodies to represent the system. Students could then
describe how their assigned component functions within the system. (P.E.K.1,
1.1)

Computing
Systems

Hardware &
Software

Communicating 7.2

K-2 K-2.CS.3 Describe basic
hardware and
software problems
using accurate
terminology.

Problems with computing systems have different causes. Accurate description
of the problem aids users in finding solutions. Students communicate a
problem with accurate terminology (e.g., when an app or program is not
working as expected, a device will not turn on, the sound does not work, etc.).
Students at this level do not need to understand the causes of hardware and
software problems.

For example, students could sort hardware and software terms on a word wall,
and refer to the word wall when describing problems using "I see..."
statements (e.g., "I see the pointer on the screen is missing", "I see that the
computer will not turn on"). (CA CCSS for ELA/Literacy L.K.5.A, L.1.5.A, SL K.
5, SL1.5, SL 2.5) (Visual Arts Kinder 5.2)

Alternatively, students could use appropriate terminology during collaborative
conversations as they learn to debug, troubleshoot, collaborate, and think
critically with technology. (CA CCSS for ELA/Literacy SL.K.1, SL.1.1, SL.2.1)

Computing
Systems

Troubleshooting Testing,
Communicating

6.2, 7.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.NI.4 Model and describe
how people connect
to other people,
places, information
and ideas through a
network.

Information is passed between multiple points (nodes) on a network. The
Internet is a network that enables people to connect with other people
worldwide through many different points of connection. Students model ways
that people communicate, find information, or acquire ideas through a
network. Students use a network, such as the internet, to access information
from multiple locations or devices.

For example, students could utilize a cloud-based platform to access shared
documents or note-taking applications for group research projects, and then
create a model (e.g., flowchart) to illustrate how this network aids
collaboration. (CA CCSS for ELA/Literacy W.K.7, W.1.7, W.2.7)

Alternatively, students could design devices that use light or sound to aid
communication across distances (e.g., light source to send signals, paper cup
and string “telephones,” and a pattern of drum beats) and then describe how
networks build connections. (CA NGSS: 1-PS4-4)

Networks & the
Internet

Network
Communication &
Organization

Abstraction 4.4

K-2 K-2.NI.5 Explain why people
use passwords.

Passwords protect information from unwanted use by others. When creating
passwords, people often use patterns of familiar numbers and text to more
easily remember their passwords. However, this may make the passwords
weaker. Knowledge about the importance of passwords is an essential first
step in learning about cybersecurity. Students explain that strong passwords
are needed to protect devices and information from unwanted use.

For example, students could play a game of guessing a three character code.
In one version of the game, the characters are only numbers. In the second
version, characters are numbers or letters. Students describe why it would
take longer to guess the correct code in the second case.

Alternatively, students could engage in a collaborative discussion regarding
passwords and their importance. Students may follow-up the discussion by
exploring strong password components (combination of letters, numbers, and
characters), creating their own passwords, and writing opinion pieces
indicating reasons their passwords are strong. (CA CCSS for ELA/Literacy SL.
K.1, SL.1.1, SL 2.1, W.1.1, W.2.1)

Networks & the
Internet

Cybersecurity Communciating 7.2

K-2 K-2.NI.6 Create patterns to
communicate a
message.

Connecting devices to a network or the Internet provides great benefit, but
care must be taken to protect devices and information from unauthorized
access. Messages can be protected by using secret languages or codes.
Patterns help to ensure that the intended recipient can decode the message.
Students create a pattern that can be decoded and translated into a message.

For example, students could use a table to associate each text character with
a number. Then, they could select a combination of text characters and use
mathematical functions (e.g., simple arithmetic operations) to transform the
numbers associated with the characters into a secret message. Using inverse
functions, a peer could translate the secret message back into its original
form. (CA CCSS for Mathematics 2.OA.A.1, 2.OA.B.2)

Alternatively, students could use icons or invented symbols to represent
patterns of beat, rhythm, or pitch to decode a musical phrase. (VAPA Music K.
1.1, 1.1.1, 2.1.1, 2.2.2)

Networks & the
Internet

Cybersecurity Abstraction 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.DA.7 Store, copy, search,
retrieve, modify, and
delete information
using a computing
device, and define
the information
stored as data.

Information from the real world can be stored and processed by a computing
device. When stored on a computing device, it is referred to as data. Data can
include images, text documents, audio files, and video files. Students store,
copy, search, retrieve, modify, and delete information using a computing
device and define the information stored as data.

For example, students could produce a story using a computing device,
storing it locally or remotely (e.g., in the cloud). They could then make a copy
of the story for peer revision and editing. When the final copy of the story is
complete, students delete any unnecessary files. They search for and retrieve
data from a local or remote source, depending on where it was stored. (CA
CCSS for ELA/Literacy W.K.6, W.K.5, W1.6, W.1.5, W.2.6, W.2.5)

Alternatively, students could record their voices singing an age-appropriate
song. They could store the data on a computing device, search for peers'
audio files, retrieve their own files, and delete unnecesary takes. (VAPA Music
K.2.2, 1.2.2, 2.2.2)

Data & Analysis Storage Abstraction 4.2

K-2 K-2.DA.8 Collect and present
data in various
visual formats.

Data can be collected and presented in various visual formats.

For example, students could measure temperature changes throughout a day.
They could then discuss ways to display the data visually. Students could
extend the activity by writing different narratives based on collected data, such
as a story that begins in the morning when temperatures are low and one that
begins in the afternoon when the sun is high and temperatures are higher. (CA
CCSS for ELA/Literacy RL.K.9, RL.1.9, RL.2.9, W.K.3, W.1.3, W.2.3).

Alternatively, students collect peers' favorite flavor of ice cream and
brainstorm differing ways to display the data. In groups, students can choose
to display and present the data in a format of their choice. (CA CCSS for
Mathematics K.MD.3, 1.MD.4, 2.MD.10)

Data & Analysis Collection
Visualization &
Transformation

Communicating,
Abstraction

7.1, 4.4

K-2 K-2.DA.9 Identify and
describe patterns in
data visualizations,
such as charts or
graphs, to make
predictions.

Data can be used to make inferences or predictions about the world.

For example, students could record the number of each color of candy in a
small packet. Then, they compare their individual data with classmates.
Students could use the collected data to predict how many of each colored
candy will be in a full size bag of like candy. (CA CCSS for Mathematics K.
MD.3, 1.MD.4, 2.MD.10)

Alternatively, students could sort and classify objects according to their
properties and note observations. Students could then create a graph or chart
of their observations and look for connections/relationships (e.g., items that
are hard are usually also smooth, or items that are fluffy are usually also light
in weight.) Students then look at pictures of additional objects and make
predictions regarding the properties of the objects pictured. (CA NGSS: 2-
PS1-1, 2-PS1-2)

Data & Analysis Inference & Models Abstraction 4.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.AP.10 Model daily
processes by
creating and
following algorithms
to complete tasks.

Algorithms are sequences of instructions that describe how to complete a
specific task. Students create algorithms that reflect simple life tasks inside
and outside of the classroom.

For example, students could create algorithms to represent daily routines for
getting ready for school, transitioning through center rotations, eating lunch,
and putting away art materials. Students could then write a narrative sequence
of events. (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3)

Alternatively, students could create a game or a dance with a specific set of
movements to reach an intentional goal or objective. (P.E K.2, 1.2, 2.2)

Additionally, students could create a map of their neighborhood and give step-
by-step directions of how they get to school. (HSS.K.4, 1.2, 2.2)

Algorithms &
Programming

Algorithms Computational
Problems,
Abstraction

4.4, 3.2

K-2 K-2.AP.11 Model the way
programs store
data.

Information in the real world can be represented in computer programs.
Students model the digital storage of data by transforming real-world
information into symbolic representations that include text, numbers, and
images.

For example, after identifying symbols on a map and explaining what they
represent in the real world, students could create their own symbols and
corresponding legend to represent items on a map of their classroom (HSS.K.
4.3, 1.2.3, 2.2.2)

Alternatively, students could invent symbols to represent beat and/or pitch.
Students could then modify symbols within the notation and explain how the
musical phrase changes. (VAPA Music K.1.1, 1.1.1, 2.1.1, 2.2.2)

Algorithms &
Programming

Variables Abstraction 4.4

K-2 K-2.AP.12 Create programs
with sequences of
commands and
simple loops, to
express ideas or
address a problem.

People create programs by composing sequences of commands that specify
the precise order in which instructions should be executed. Loops enable
programs to repeat a sequence of commands multiple times.

For example, students could follow simple movements in response to oral
instructions. Students could then create a simple sequence of movement
commands in response to a given problem (e.g., In how many ways can you
travel from point A to point B?) and represent it as a computer program, using
loops to repeat commands. (VAPA Dance K.1.4, 1.2.3, 1.2.5, 1.2.8, 2.2.1,
2.2.2, 2.2.3)

Alternatively, on a mat with many different CVC words, students could
program robots to move to words with a similar vowel sound. Students could
look for multiple ways to solve the problem and simplify their solution by
incorporating loops. (CA CCSS for ELA/Literacy RF.K.2.D, RF.1.2.C)

Algorithms &
Programming

Control, Modularity Creating 5.2

K-2 K-2.AP.13 Decompose the
steps needed to
solve a problem into
a sequence of
instructions.

Decomposition is the act of breaking down tasks into simpler tasks.

For example, students could break down the steps needed to make a peanut
butter and jelly sandwich, to brush their teeth, to draw a shape, to move a
character across the screen, or to solve a level of a coding app. In a visual
programming environment, students could break down the steps needed to
draw a shape. (CA CCSS for Mathematics K.G.5, 1.G.1, 2.G.1)

Alternatively, students could decompose the planning of a birthday party into
tasks such as: 1) Decide when and where it should be, 2) List friends and
family to invite, 3) Send the invitations, 4) Bake a cake, 5) Decorate, etc.

Algorithms &
Programming

Modularity Computational
Problems

3.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.AP.14 Develop plans that
describe a program’
s sequence of
events, goals, and
expected outcomes.

Creating a plan for what a program will do clarifies the steps that will be
needed to create the program and can be used to check if a program runs as
expected. Students create a planning document to illustrate their program's
sequence of events, goals, and expected outcomes of what their program will
do. Planning documents could include a story map, a storyboard, or a
sequential graphic organizer, to illustrate their program's sequence of events,
goals, and expected outcomes of what their program will do. Students at this
level may complete the planning process with help from the teacher.

For example, students could create a storyboard or timeline that represents a
family's history, leading to their current location of residence. Students could
then create a plan for a program that animates the story of family locations.
(HSS 2.1.1) (CA CCSS for ELA/Literacy W.K.3, W.1.3, W.2.3)

Algorithms &
Programming

Program
Development

Creating,
Communicating

5.1, 7.2

K-2 K-2.AP.15 Give attribution
when using the
ideas and creations
of others while
developing
programs.

Computing makes it easy to reuse and remix others' creations, and this comes
with a level of responsibility. Students credit artifacts that were created by
others, such as pictures, music, and code. Credit could be given orally if
presenting their work to the class, or in writing if sharing work on a class blog
or website. Proper attribution at this stage does not require formal citation,
such as in a bibliography or works cited document.

For example, when creating an animation of the sun, moon, and stars using a
blocks-based language, students could draw their own sun and use an image
of the moon and stars from a website or a teammate. When students present
the model to the class, they can orally give credit to the website or peer for the
contributions. (CA CCSS for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (NGSS.1-
ESS1-1) (CA Model School Library Standards 2.3.b, 2.4.2.a)

Algorithms &
Programming

Program
Development

Communicating 7.3

K-2 K-2.AP.16 Debug errors in an
algorithm or
program that
includes sequences
and simple loops.

Algorithms or programs may not always work correctly. Students use various
strategies, such as changing the sequence of the steps, following the
algorithm in a step-by-step manner, or trial and error to fix problems in
algorithms and programs.

For example, when given images placed in a random order, students could
give step-by-step commands to direct a robot, or a student playing a robot, to
navigate to the images in the correct sequence. Examples of images include
storyboard cards from a familiar story (CA CCSS for ELA/Literacy RL.K.2, RL.
1.2, RL.2.2) and locations of the sun at different times of the day (CA NGSS:
1-ESS1-1).

Alternatively, students could "program" the teacher or another classmate by
giving precise instructions to make a peanut butter and jelly sandwich or
navigate around the classroom. When the teacher or classmate doesn't
respond as intended, students correct their commands. Additionally, students
could receive a partially completed soundboard program that has a variety of
animals programmed to play a corresponding sound when the user touches
them. Students correct any sounds that don't match the animal (e.g., if the cat
moos, students change the moo sound to meow).

Algorithms &
Programming

Program
Development

Testing 6.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.AP.17 Describe the steps
taken and choices
made during the
iterative process of
program
development.

Program developers make choices and iterate to continually refine their
product. At this stage, students explain or write about the goals and expected
outcomes of the programs they create and the choices that they made when
creating programs. Students could use coding journals, discussions with a
teacher, class presentations, or blogs.

For example, students could use a combination of images, verbal reflections,
a physical model, and/or written text to show the step-by-step process taken to
develop a program such as cutting and pasting coding commands into a
journal, using manipulatives that represent different commands and control
structures, and taking screenshots of code and adding to a digital journal. This
iterative process could be documented via a speech, journal, one on one
conference with teacher or peer, small group conference, or blog. (CA CCSS
for ELA/Literacy SL.K.5, SL.1.5, SL.2.5) (CA NGSS: K-2-ETS1.2)

Algorithms &
Programming

Program
Development

Communicating 7.2

K-2 K-2.IC.18 Compare how
people lived and
worked before and
after the adoption of
new computing
technologies.

Computing technologies have changed the way people live and work.
Students describe the positive and negative impacts of these changes.

For example, as a class, students could create a timeline that includes
advancements in computing technologies. Each student could then choose an
advancement from the timeline and make a graphic organizer noting how
people's lives were different before and after its introduction into society.
Student responses could include: In the past, if students wanted to read about
a topic, they needed access to a library to find a book about it. Today,
students can view and read information on the Internet about a topic or they
can download e-books about it directly to a device. Such information may be
available in more than one language and could be read to a student, allowing
for great accessibility. (HSS.K.6.3)

Alternatively, students could retell or dramatize stories, myths, and fairy tales
from two distinct time periods before and after a particular computing
technology had been introduced. For example, the setting of one story could
take place before smartphones had been invented, while a second setting
could take place with smartphones in use by characters in the story. Students
could note the positive and negative aspects of smartphones on the daily lives
of the characters in the story. (VAPA Theatre Arts K.3.1, K.3.2, 1.2.2, 2.3.2)
(CA CCSS for ELA/Literacy RL.K.2, RL.K.9, RL.1., RL.1.9, RL.2.2, RL.2.9)

Impacts of
Computing

Culture Computational
Problems

3.1

K-2 K-2.IC.19 Work respectfully
and responsibly
with others when
communicating
electronically.

Electronic communication facilitates positive interactions, such as sharing
ideas with many people, but the public and anonymous nature of electronic
communication also allows intimidating and inappropriate behavior in the form
of cyberbullying. Responsible electronic communication includes limiting
access to personably identifiable information. Students learn and use
appropriate behavior when communicating electronically (often called
"netiquette").

For example, students could share their work on a classroom blog or in other
collaborative spaces online, taking care to avoid sharing information that is
inappropriate or that could personally identify themselves to others. (CA CCSS
for ELA/Literacy W.K.6, W.1.6, W.21.6)

Alternatively, students could provide feedback to others on their work in a kind
and respectful manner. They could learn how written words can be easily
misinterpreted and may seem negative when the intention may be to express
confusion, give ideas, or prompt further discussion. They could also learn to
identify harmful behavior on collaborative spaces and intervening to find the
proper authority to help. (CA CCSS for ELA/Literacy W.K.5, W.1.5, W.2.5)
(HSS 1.1.2)

Impacts of
Computing

Social Interactions Collaborating 2.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

K-2 K-2.IC.20 Describe
approaches and
rationales for
keeping login
information private,
and for logging off
of devices
appropriately.

People use computing technology in ways that can help or hurt themselves
and/or others. Harmful behaviors, such as sharing passwords or other private
information and leaving public devices logged in should be recognized and
avoided. Students keep login information private, log off of devices
appropriately, and discuss the importance of these practices.

For example, while learning about individual responsibility and citizenship,
students could create a "privacy folder" to store login information, and keep
this folder in a secure location that is not easily seen and accessed by
classmates. Students could discuss the relative benefits and impacts of
choosing to store passwords in a folder online versus on paper. They could
also describe how using the same login and password across many systems
and apps could lead to significant security issues and requires even more
vigilance in maintaining security. (HSS K.1)

Alternatively, students can write an informational piece regarding the
importance of keeping login information private and logging off of public
devices. (CA CCSS for ELA/Literacy W.K.2, W.1.2, W.2.2)

Impacts of
Computing

Safety Law & Ethics Computational
Problems

3.1

3-5 3-5.CS.1 Describe how
computing devices
connect to other
components to form
a system.

Computing devices often depend on other devices or components. Students
describe physical and wireless connections to other components, including
both input devices (e.g., keyboards, sensors, remote controls, microphones)
and output devices (e.g., 3D printers, monitors, speakers).

For example, students could describe the relationship among the heart, lungs,
muscles, blood, and oxygen during physical activity and then compare this to
how a mouse, keyboard, printer, and desktop computer connect and interact
to allow for input, processing, and output. (P.E.3.4.7)

Alternatively, when describing how light reflected from objects enters the eye
and is then transferred to the brain to construct a visual image, students could
compare this to a computing system that uses programming to construct a
visual image when data is transferred and constructed/reconstructed through
a keyboard, camera, or other components. (CA NGSS: 4-PS4-2)

Computing
Systems

Devices Communicating 7.2

3-5 3-5.CS.2 Demonstrate how
computer hardware
and software work
together as a
system to
accomplish tasks.

Hardware and software are both needed to accomplish tasks with a computing
device. Students create a model to illustrate ways in which hardware and
software work as a system. Students could draw a model on paper or in a
drawing program, program an animation to demonstrate it, or demonstrate it
by acting this out in some way. At this level, a model should only include the
basic elements of a computer system, such as input, output, processor,
sensors, and storage.

For example, students could create a diagram or flow chart to indicate how a
keyboard, desktop computer, monitor, and word processing software interact
with each other. The keyboard (hardware) detects a key press, which the
operating system and word processing application (software) displays as a
new character that has been inserted into the document and is visible through
the monitor (hardware). Students could also create a model by acting out the
interactions of these different hardware and software components.

Alternatively, when describing that animals and people receive different types
of information through their senses, process the information in their brain, and
respond to the information in different ways, students could compare this to
the interaction of how the information traveling through a computer from
mouse to processor are similar to signals sent through the nervous system
telling our brain about the world around us to prompt responses. (CA NGSS:
4-LS1-2)

Computing
Systems

Hardware &
Software

Abstraction 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.CS.3 Determine potential
solutions to solve
simple hardware
and software
problems using
common
troubleshooting
strategies.

Although computing systems vary, common troubleshooting strategies can be
used across many different systems. Students use troubleshooting strategies
to identify problems that could include a device not responding, lacking power,
lacking a network connection, an app crashing, not playing sounds, or
password entry not working. Students use and develop various solutions to
address these problems. Solutions may include rebooting the device, checking
for power, checking network availability, opening and closing an app, making
sure speakers are turned on or headphones are plugged in, and making sure
that the caps lock key is not on.

For example, students could prepare for and participate in a collaborative
discussion in which they identify and list computing system problems and then
describe common successful fixes. (CA CCSS for ELA/Literacy SL.3.1, SL.
4.1, SL.5.1)

Alternatively, students could write informative/explanatory texts, create a
poster, or use another medium of communication to examine common
troubleshooting strategies and convey these ideas and information clearly.
(CA CCSS for ELA/Literacy W.3.2, W.4.2, W.5.2)

Computing
Systems

Troubleshooting Testing 6.2

3-5 3-5.NI.4 Model how
information is
broken down into
smaller pieces,
transmitted as
packets through
multiple devices
over networks and
the Internet, and
reassembled at the
destination.

Information is sent and received over physical or wireless paths. It is broken
down into smaller pieces called packets, which are sent independently and
reassembled at the destination. Students demonstrate their understanding of
this flow of information by, for instance, drawing a model of the way packets
are transmitted, programming an animation to show how packets are
transmitted, or demonstrating this through an unplugged activity in which they
physically act this out.

For example, students could design a structure using building blocks or other
materials with the intention of re-engineering it in another location, just as
early Americans did after the intercontinental railroad was constructed in the
1850s (HSS.4.4.1, 4.4.2). Students could deconstruct the designed structure,
place materials into specific containers (or plastic bags/brown paper
bags/etc.), and develop instructions on how to recreate the structure once
each container arrives at its intended destination. (CA NGSS: 3-5-ETS1)

For example, students could cut up a map of the United States by state lines.
Students could then place the states in envelopes and transmit the "packets"
through a physical network, represented by multiple students spreading out in
arms reach of at least two others. At the destination, the student who receives
the packets resassembles the individual states back into a map of the United
States. (HSS 5.9)

Alternatively, students could perform a similar activity with a diatonic scale,
cutting the scale into individual notes. Each note, in order, should be placed
into a numbered envelope based on its location on the scale. These
envelopes can be transmitted across the network of students and
reassembled at the destination. (VAPA Music 4.1.2)

Networks & the
Internet

Network
Communication &
Organization

Abstraction 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.NI.5 Describe physical
and digital security
measures for
protecting personal
information.

Personal information can be protected physically and digitally. Cybersecurity is
the protection from unauthorized use of electronic data, or the measures taken
to achieve this. Students identify what personal information is and the reasons
for protecting it. Students describe physical and digital approaches for
protecting personal information such as using strong passwords and biometric
scanners.

For example, students could engage in a collaborative discussion orally or in
writing regarding topics that relate to personal cybersecurity issues.
Discussion topics could be based on current events related to cybersecurity or
topics that are applicable to students, such as the necessity of backing up
data to guard against loss, how to create strong passwords and the
importance of not sharing passwords, or why we should keep operating
systems updated and use anti-virus software to protect data and systems.
Students could also discuss physical measures that can be used to protect
data including biometric scanners, locked doors, and physical backups. (CA
CCSS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Networks & the
Internet

Cybersecurity Computational
Problems

3.1

3-5 3-5.NI.6 Create patterns to
protect information
from unauthorized
access.

Encryption is the process of converting information or data into a code,
especially to prevent unauthorized access. At this level, students use patterns
as a code for encryption, to protect information. Patterns should be decodable
to the party for whom the message is intended, but difficult or impossible for
those with unauthorized access.

For example, students could create encrypted messages via flashing a
flashlight in Morse code. Other students could decode this established
language even if it wasn't meant for them. To model the idea of protecting
data, students should create their own variations on or changes to Morse
code. This ensures that when a member of that group flashes a message only
other members of their group can decode it, even if other students in the room
can see it. (CA NGSS: 4-PS4-3)

Alternatively, students could engage in a CS Unplugged activity that models
public key encryption: One student puts a paper containing a written secret in
a box, locks it with a padlock, and hands the box to a second student. Student
2 puts on a second padlock and hands it back. Student 1 removes her lock
and hands the box to student 2 again. Student 2 removes his lock, opens the
box, and has access to the secret that student 1 sent him. Because the box
always contained at least one lock while in transit, an outside party never had
the opportunity to see the message and it is protected.

Networks & the
Internet

Cybersecurity Abstraction 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.DA.7 Explain that the
amount of space
required to store
data differs based
on the type of data
and/or level of
detail.

All saved data requires space to store it, whether locally or not (e.g., on the
cloud). Music, images, video, and text require different amounts of storage.
Video will often require more storage and different format than music or
images alone because video combines both. The level of detail represented
by that data also affects storage requirements. For instance, two pictures of
the same object can require different amounts of storage based upon their
resolution, and a high-resolution photo could require more storage than a low-
resolution video. Students select appropriate storage for their data.

For example, students could create an image using a standard drawing app.
They could save the image in different formats (e.g., .png, .jpg, .pdf) and
compare file sizes. They should also notice that different file sizes can result in
differences in quality or resolution (e.g., some pictures could be more
pixelated while some could be sharper).

Alternatively, in an unplugged activity, students could represent images by
coloring in squares within a large grid. They could model how a larger grid
requires more storage but also represents a clearer image (i.e., higher
resolution).

Data & Analysis Storage Abstraction 4.2

3-5 3-5.DA.8 Organize and
present collected
data visually to
highlight
relationships and
support a claim.

Raw data has little meaning on its own. Data is often sorted or grouped to
provide additional clarity. Organizing data can make interpreting and
communicating it to others easier. Data points can be clustered by a number
of commonalities. The same data could be manipulated in different ways to
emphasize particular aspects or parts of the data set.

For example, students could create and administer electronic surveys to their
classmates. Possible topics could include favorite books, family heritage, and
after school activities. Students could then create digital displays of the data
they have collected such as column histogram charts showing the percent of
respondents in each grade who selected a particular favorite book. Finally,
students could make quantitative statements supported by the data such as
which books are more appealing to specific ages of students. As an extension,
students could write an opinion piece stating a claim and supporting it with
evidence from the data they collected. (CA CCSS for Mathematics 3.MD.3, 4.
MD.4, 5.MD.2) (CA CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

Alternatively, students could represent data in tables and graphical displays to
describe weather experienced in the last several years. They could select the
type of graphical display based on the specific data represented (e.g., daily
high/low temperatures on a scatter plot, average temperatures for a month
across years in a column chart). Students could then make a claim about
expected weather in future months based on the data. (CA NGSS: 3-ESS2-1)

Data & Analysis Collection
Visualization &
Transformation

Communicating 7.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.DA.9 Use data to
highlight and/or
propose
relationships,
predict outcomes,
or communicate
ideas.

The accuracy of data analysis is related to how the data is represented.
Inferences or predictions based on data are less likely to be accurate if the
data is insufficient, incomplete, or inaccurate or if the data is incorrect in some
way. Additionally, people select aspects and subsets of data to be
transformed, organized, and categorized. Students should be able to refer to
data when communicating an idea, in order to highlight and/or propose
relationships, predict outcomes, highlight different views and/or communicate
insights and ideas.

For example, students can be provided a scenario in which they are city
managers who have a specific amount of funds to improve a city in California.
Students can collect data of a city concerning land use, vegetation, wildlife,
climate, population density, services and transportation (HSS.4.1.5) to
determine and present what area needs to be focused on to improve a
problem. Students can compare their data and planned use of funds with
peers, clearly communicating or predict outcomes based on data collected.
(CA CCCS for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Alternatively, students could record the temperature at noon each day to show
that temperatures are higher in certain months of the year. If temperatures are
not recorded on non-school days or are recorded incorrectly, the data would
be incomplete and ideas being communicated could be inaccurate. Students
may also record the day of the week on which the data was collected, but this
would have no relevance to whether temperatures are higher or lower. In
order to have sufficient and accurate data on which to communicate the idea,
students might use data provided by a governmental weather agency. (CA
NGSS: 3-ESS2-1)

Data & Analysis Inference & Models Communicating 7.1

3-5 3-5.AP.10 Compare and refine
multiple algorithms
for the same task
and determine
which is the most
appropriate.

Different algorithms can achieve the same result, though sometimes one
algorithm might be more appropriate for a specific solution. Students examine
different ways to solve the same task and decide which would be the better
solution for the specific scenario.

For example, students could use a map and create multiple algorithms to
model the early land and sea routes to and from European settlements in
California. They could then compare and refine their algorithms to reflect
faster travel times, shorter distances, or avoid specific characteristics, such as
mountains, deserts, ocean currents, and wind patterns. (HSS.4.2.2)

Alternatively, students could identify multiple algorithms for decomposing a
fraction into a sum of fractions with the same denominator and record each
decomposition with an equation (e.g., 2 1/8 = 1 + 1 + 1/8 = 8/8 + 8/8 + 1/8).
Students could then select the most efficient algorithm (e.g., fewest number of
steps). (CA CCSS for Mathematics 4.NF.3b)

Additionally, students could compare algorithms that describe how to get
ready for school and modify them for supporting different goals including
having time to care for a pet, being able to talk with a friend before classes
start, or taking a longer route to school to accompany a younger sibling to their
school first. Students could then write an opinion piece, justifying with reasons
their selected algorithm is most appropriate. (CA CCSS for ELA/Literacy W.
3.1, W.4.1, W.5.1)

Algorithms &
Programming

Algorithms Testing,
Computational
Problems

6.3, 3.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.AP.11 Create programs
that use variables to
store and modify
data.

Variables are used to store and modify data. Students use variables in
programs they create. At this level, students may need guidance in identifying
when to create variables (i.e., performing the abstraction).

For example, students could create a game to represent predators and prey in
an ecosystem. They could declare a "score" variable, assign it to 0 at the start
of the game, and add 1 (increment) the score each time the predator captures
its prey. They could also declare a second "numberOfLives" variable, assign it
to 3 at the start of the game, and subtract 1 (decrement) each time a prey is
captured. They could program the game to end when "numberOfLives" equals
0. (CA NGSS: 5-LS2-1) (CA CCSS for Mathematics 5.OA.3)

Alternatively, when students create programs to draw regular polygons, they
could use variables to store the line size, line color, and/or side length.
Students can extend learning by creatively combining a variety of polygons to
create digital artwork, comparing and contrasting this to another work of art
made by the use of different art tools and media, such as watercolor or
tempera paints. (CA CCSS for Mathematics 3.G.1) (VAPA Visual Arts 3.1.4)

Algorithms &
Programming

Variables Creating 5.2

3-5 3-5.AP.12 Create programs
that include events,
loops, and
conditionals.

Control structures specify the order (sequence) in which instructions are
executed within a program and can be combined to support the creation of
more complex programs. Events allow portions of a program to run based on
a specific action. Conditionals allow for the execution of a portion of code in a
program when a certain condition is true. Loops allow for the repetition of a
sequence of code multiple times.

For example, students could program an interactive map of the United States
of America. They could use events to initiate a question when the user clicks
on a state and conditionals to check whether the user input is correct. They
could use loops to repeat the question until the user answers correctly or to
control the length of a "congratulations" scenario that plays after a correct
answer. (HSS.5.9)

Alternatively, students could write a math fluency game that asks products of
two one-digit numbers and then uses a conditional to check whether or not the
answer that was entered is correct. They could use a loop to repeatedly ask
another question. They could use events to allow the user to click on a green
button to play again or a red button to end the game. (CA CCSS for
Mathematics 3.OA.7)

Additionally, students could create a program as a role-playing game based
on a literary work. Loops could be used to animate a character's movement.
When reaching a decision point in the story, an event could initiate the user to
type a response. A conditional could change the setting or have the story play
out differently based on the user input. (CA CCSS for ELA/Literacy RL.5.3)

Algorithms &
Programming

Control Creating 5.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.AP.13 Decompose
problems into
smaller, manageable
tasks which may
themselves be
decomposed.

Decomposition is the act of breaking down tasks into simpler tasks. This
manages complexity in the problem solving and program development
process.

For example, students could create an animation to represent a story they
have written. Students write a story and then break it down into different
scenes. For each scene, they would select a background, place characters,
and program actions in that scene. (CA CCSS for ELA/Literacy W.3.3, W.4.3,
W.5.3)

Alternatively, students could create a program to allow classmates to present
data collected in an experiment. For example, if students collected rain gauge
data once per week for 3 months, students could break down the program
tasks: 1) ask the user to input 12 weeks worth of data, 2) process the data (e.
g., add the first four entries to calculate the rain amount for month 1, convert to
metric system measurements), and 3) direct the creation or resizing of objects
(e.g., one rectangular chart bar for each month) to represent the total number
of rainfall for that month. (CA NGSS: 3-ETS-1-2) (CA CCSS for Mathematics
3.MD.2)

Algorithms &
Programming

Modularity Computational
Problems

3.2

3-5 3-5.AP.14 Create programs by
incorporating
smaller portions of
existing programs,
to develop
something new or
add more advanced
features.

Programs can be broken down into smaller parts, which can be incorporated
into new or existing programs. Students incorporate predefined functions into
their original designs. At this level, students do not need to understand all of
the underlying implementation details of the abstractions that they use.

For example, students could use code from a ping pong animation to make a
ball bounce in a new basketball game. They could also incorporate code from
a single-player basketball game to create a two-player game with slightly
different rules.

Alternatively, students could remix an animated story and add their own
conclusion and/or additional dialogue. (CA CCSS for ELA/Literacy W.3.3.B,
W.3.3.D, W.4.3.B, W.4.3.E, W.5.3.B, W.5.3.E)

Additionally, when creating a game that occurs on the moon or planets,
students could incorporate and modify code that simulates gravity on Earth.
They could modify the strength of the gravitational force based on the mass of
the planet or moon. (CA NGSS: 5-PS2-1)

Algorithms &
Programming

Modularity, Program
Development

Abstraction,
Creating

4.2, 5.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.AP.15 Use an iterative
process to plan and
develop a program
by considering the
perspectives and
preferences of
others.

Planning is an important part of the iterative process of program development.
Students gain a basic understanding of the importance and process of
planning before beginning to write code for a program. They plan the
development of a program by outlining key features, time and resource
constraints, and user expectations. Students should document the plan as, for
example, a storyboard, flowchart, pseudocode, or story map.

For example, students could collaborate with a partner to plan and develop a
program that graphs a function. They could iteratively modify the program
based on feedback from diverse users, such as students who are color blind
and may have trouble differentiating lines on a graph based on the color. (CA
CCSS for Mathematics 5.G.1, 5.G.2)

Alternatively, students could plan as a team to develop a program to display
experimental data. They could implement the program in stages, generating
basic displays first and then soliciting feedback from others on how easy it is
to interpret (e.g., are labels clear and readable?, are lines thick enough?, are
titles understandable?). Students could iteratively improve their display to
make it more readable and to better support the communication of the finding
of the experiment. (NGSS.3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Algorithms &
Programming

Program
Development

Inclusion,
Creating

1.1, 5.1

3-5 3-5.AP.16 Observe intellectual
property rights and
give appropriate
attribution when
creating, remixing,
or combining
programs.

Intellectual property rights can vary by country, but copyright laws give the
creator of a work a set of rights and prevents others from copying the work
and using it in ways that they may not like. Students consider common
licenses that place limitations or restrictions on the use of others' work, such
as images and music downloaded from the Internet. When incorporating the
work of others, students attribute the work. At this level, students could give
attribution by including credits or links directly in their programs, code
comments, or separate project pages.

For example, when making a program to model the life cycle of a butterfly,
students could modify and reuse an existing program that describes the life
cycle of a frog. Based on their research, students could identify and use
Creative Commons-licensed or public domain images and sounds of
caterpillars and butterflies. Students give attribution by properly citing the
source of the original piece as necessary. (CA NGSS: 3-LS-1-1) (CA CCSS
for ELA/Literacy W.3.8, W.4.8, W.5.8)

Alternatively, when creating a program explaining the structure of the United
States goverment, students find Creative Commons-licensed or public domain
images to represent the three branches of government and attribute
ownership of the images appropriately. If students find and incorporate an
audio file of a group playing part of the national anthem, they appropriately
give attribution on the project page. (HSS.3.4.4)

Algorithms &
Programming

Program
Development

Creating,
Communicating

5.2, 7.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.AP.17 Test and debug a
program or
algorithm to ensure
it accomplishes the
intended task.

Programs do not always run properly. Students need to understand how to
test and make necessary corrections to their programs to ensure they run
properly. Students successfully identify and fix errors in (debug) their
programs and programs created by others. Debugging strategies at this level
may include testing to determine the first place the solution is in error and
fixing accordingly, leaving "breadcrumbs" in a program, and soliciting
assistance from peers and online resources.

For example, when students are developing a program to control the
movement of a robot in a confined space, students test various inputs that
control movement of the robot to make sure it behaves as intended (e.g., if an
input would cause the robot to move past a wall of the confined space, it
should not move at all). (CA NGSS: 3-5-ETS1-3)

Additionally, students could test and debug an algorithm by tracing the inputs
and outputs on a whiteboard. When noticing "bugs" (errors), students could
identify what was supposed to happen and step through the algorithm to
locate and then correct the error.

Algorithms &
Programming

Program
Development

Testing 6.2

3-5 3-5.AP.18 Perform different
roles when
collaborating with
peers during the
design,
implementation, and
review stages of
program
development.

Collaborative computing is the process of creating computational artifacts by
working in pairs or on teams. It involves asking for the contributions and
feedback of others. Effective collaboration can often lead to better outcomes
than working independently. With teacher guidance, students take turns in
different roles during program development, such as driver, navigator,
notetaker, facilitator, and debugger, as they design and implement their
program.

For example, while taking on different roles during program development,
students could create and maintain a journal about their experiences working
collaboratively. (CA CCSS for ELA/Literacy W.3.10, W.4.10, W.5.10) (CA
NGSS: 3-5-ETS1-2)

Algorithms &
Programming

Program
Development

Collaborating 2.2

3-5 3-5.AP.19 Describe choices
made during
program
development using
code comments,
presentations, and
demonstrations.

People communicate about their code to help others understand and use their
programs. Explaining one's design choices gives others a better
understanding of one's work. Students may explain their step-by-step process
of creating a program in a presentation or demonstration of their personal
code journals. They describe how comments within code organize thought and
process during the develpment of the program.

For example, students could describe the decision to have the score in a
game flash when it can be rounded to 100 by writing a comment in the code.
(CA CCSS for Mathematics 3.NBT.1)

Alternatively, students could present their overall program development
experience and justify choices made by using storyboards, annotated images,
videos, and/or journal entries. (CA CCSS for ELA/Literacy SL.3.4, SL.4.4, SL.
5.4, SL.3.5, SL.4.5, SL.5.5) (CA NGSS: 3-5-ETS1-1, 3.5-ETS1-2, 3.5-ETS1-3)

Algorithms &
Programming

Program
Development

Communicating 7.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.IC.20 Discuss computing
technologies that
have changed the
world, and express
how those
technologies
influence, and are
influenced by,
cultural practices.

New computing technologies are created and existing technologies are
modified for many reasons, including to increase their benefits, decrease their
risks, and meet societal needs. Students, with guidance from their teacher,
discuss topics that relate to the history of computing technologies and
changes in the world due to these technologies. Topics could be based on
current news content, such as robotics, wireless Internet, mobile computing
devices, GPS systems, wearable computing, and how social media has
influenced social and political changes.

For example, students could conduct research in computing technologies that
impact daily life such as self-driving cars. They engage in a collaborative
discussion describing impacts of these advancements (e.g., self-driving cars
could reduce crashes and decrease traffic, but there is a cost barrier to
purchasing them). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7, SL.3.1,
SL.4.1, SL.5.1)

Alternatively, students could discuss how technological advancements
affected the entertainment industry and then compare and contrast the
impacts on audiences. For instance, people with access to high-speed Internet
may be able to choose to utilize streaming media (which may cost less than
traditional media options), but those in rural areas may not have the same
access and be able to reap those benefits. (VAPA Theatre Arts 4.3.2, 4.4.2)

Impacts of
Computing

Culture Computational
Problems

3.1

3-5 3-5.IC.21 Propose ways to
improve the
accessibility and
usability of
technology
products for the
diverse needs and
wants of users.

The development and modification of computing technology is driven by
people’s needs and wants and can affect groups differently. Students
anticipate the needs and wants of diverse end users and propose ways to
improve access and usability of technology, with consideration of potential
perspectives of users with different backgrounds, ability levels, points of view,
and disabilities.

For example, students could research a wide variety of disabilities that would
limit the use of traditional computational tools for the creation of multimedia
artifacts, including digital images, songs, and videos. Students could then
brainstorm and propose new software that would allow students that are
limited by the disabilities to create similar artifacts in new ways (e.g., graphical
display of music for the deaf, the sonification of images for visually impaired
students, voice input for those that are unable to use traditional input like the
mouse and the keyboard). (CA CCSS for ELA/Literacy W.3.7, W.4.7, W.5.7)

Alternatively, as they anticipate unique user needs, students may consider
using both speech and text to convey information in a game. They may also
wish to vary the types of programs they create, knowing that not everyone
shares their own tastes. (CA NGSS: 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3)

Impacts of
Computing

Culture Inclusion 1.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

3-5 3-5.IC.22 Seek and explain
the impact of
diverse
perspectives for the
purpose of
improving
computational
artifacts.

Computing technologies enable global collaboration and sharing of ideas.
Students solicit feedback from a diverse group of users and creators and
explain how this input improves their computational artifacts.

For example, students could seek feedback from classmates via user surveys,
in order to create an idea and then make a claim as to how to improve the
overall structure and function of their computational artifact. Using the
feedback students could write an opinion piece supporting their claim. (CA
CCSS for ELA/Literacy W.3.1, W.4.1, W.5.1)

Alternatively, with guidance from their teacher, students could use video
conferencing tools, shared documents, or other online collaborative spaces,
such as blogs, wikis, forums, or website comments, to gather and synthesize
feedback from individuals and groups about programming projects. (CA CCSS
for ELA/Literacy SL.3.1, SL.4.1, SL.5.1)

Impacts of
Computing

Social Interactions Inclusion 1.1

3-5 3-5.IC.23 Describe reasons
creators might limit
the use of their
work.

Ethical complications arise from the opportunities provided by computing. With
the ease of sending and receiving copies of media on the Internet, in formats
such as video, photos, and music, students consider the opportunities for
unauthorized use, such as online piracy and disregard of copyrights. The
license of a downloaded image or audio file may restrict modification, require
attribution, or prohibit use entirely.

For example, students could take part in a collaborative discussion regarding
reasons why musicians who sell their songs in digital format choose to license
their work so that they can earn money for their creative efforts. If others share
the songs without paying for them, the musicians do not benefit financially and
may struggle to produce music in the future. (CA CCSS for ELA/Literacy SL.
3.1, SL.4.1, SL.5.1)

Alternatively, students could review the rights and reproduction guidelines for
digital artifacts on a publicly accessible media source. They could then state
an opinion with reasons they believe these guidelines are in place. (CA CCSS
for ELA/Literacy W.3.1, W.4.1, W.5.1)

Impacts of
Computing

Safety Law & Ethics Communicating 7.3

6-8 6-8.CS.1 Design
modifications to
computing devices
in order to improve
the ways users
interact with the
devices.

Computing devices can extend the abilities of humans, but design
considerations are critical to make these devices useful. Students suggest
modifications to the design of computing devices and describe how these
modifications would improve usabilty.

For example, students could create a design for the screen layout of a
smartphone that is more usable by people with vision impairments or hand
tremors. They might also design how to use the device as a scanner to
convert text to speech.

Alternatively, students could design modifications for a student ID card reader
to increase usability by planning for scanner height, need of scanner device to
be connected physically to the computer, robustness of scanner housing, and
choice of use of RFID or line of sight scanners. (CA NGSS: MS-ETS1-1)

Computing
Systems

Devices Inclusion,
Computational
Problems

1.2, 3.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.CS.2 Design a project
that combines
hardware and
software
components to
collect and
exchange data.

Collecting and exchanging data involves input, output, storage, and
processing. When possible, students select the components for their project
designs by considering tradeoffs between factors such as functionality, cost,
size, speed, accessibility, and aesthetics. Students do not need to implement
their project design in order to meet this standard.

For example, students could design a mobile tour app that displays
information relevant to specific locations when the device is nearby or when
the user selects a virtual stop on the tour. They select appropriate
components, such as GPS or cellular-based geolocation tools, textual input,
and speech recognition, to use in their project design.

Alternatively, students could design a project that uses a sensor to collect the
salinity, moisture, and temperature of soil. They may select a sensor that
connects wirelessly through a Bluetooth connection because it supports
greater mobility, or they could instead select a physical USB connection that
does not require a separate power source. (CA NGSS: MS-ETS1-1, MS-
ETS1-2)

Computing
Systems

Hardware &
Software

Creating 5.1

6-8 6-8.CS.3 Systematically apply
troubleshooting
strategies to identify
and resolve
hardware and
software problems
in computing
systems.

When problems occur within computing systems, it is important to take a
structured, step-by-step approach to effectively solve the problem and ensure
that potential solutions are not overlooked. Examples of troubleshooting
strategies include following a troubleshooting flow diagram, making changes
to software to see if hardware will work, checking connections and settings,
and swapping in working components. Since a computing device may interact
with interconnected devices within a system, problems may not be due to the
specific computing device itself but to devices connected to it.

For example, students could work through a checklist of solutions for
connectivity problems in a lab of computers connected wirelessly or through
physical cables. They could also search for technical information online and
engage in technical reading to create troubleshooting documents that they
then apply. (CA CCSS for ELA/Literacy RST.6-8.10)

Alternatively, students could explore and utilize operating system tools to reset
a computer's default language to English.

Additionally, students could swap out an externally-controlled sensor giving
fluctuating readings with a new sensor to check whether there is a hardware
problem.

Computing
Systems

Troubleshooting Testing 6.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.NI.4 Model the role of
protocols in
transmitting data
across networks
and the Internet.

Protocols are rules that define how messages between computers are sent.
They determine how quickly and securely information is transmitted across
networks, as well as how to handle errors in transmission. Students model
how data is sent using protocols to choose the fastest path and to deal with
missing information. Knowledge of the details of how specific protocols work is
not expected. The priority at this grade level is understanding the purpose of
protocols and how they enable efficient and errorless communication.

For example, students could devise a plan for sending data representing a
textual message and devise a plan for resending lost information.

Alternatively, students could devise a plan for sending data to represent a
picture, and devise a plan for interpreting the image when pieces of the data
are missing.

Additionally, students could model the speed of sending messages by
Bluetooth, Wi-Fi, or cellular networks and describe ways errors in data
transmission can be detected and dealt with.

Networks & the
Internet

Network
Communication &
Organization

Abstraction 4.4

6-8 6-8.NI.5 Explain potential
security threats and
security measures
to mitigate threats.

Cybersecurity is an important field of study and it is valuable for students to
understand the need for protecting sensitive data. Students identify multiple
methods for protecting data and articulate the value and appropriateness for
each method. Students are not expected to implement or explain the
implementation of such technologies.

For example, students could explain the importance of keeping passwords
hidden, setting secure router administrator passwords, erasing a storage
device before it is reused, and using firewalls to restrict access to private
networks.

Alternatively, students could explain the importance of two-factor
authentication and HTTPS connections to ensure secure data transmission.

Networks & the
Internet

Cybersecurity Computational
Problems

3.1, 3.3

6-8 6-8.NI.6 Apply multiple
methods of
information
protection to model
the secure
transmission of
information.

Digital information is protected using a variety of cryptographic techniques.
Cryptography is essential to many models of cybersecurity. At its core,
cryptography has a mathematical foundation. Cryptographic encryption can be
as simple as letter substitution or as complicated as modern methods used to
secure networks and the Internet. Students encode and decode messages
using encryption methods, and explore different levels of complexity used to
hide or secure information.

For example, students could identify methods of secret communication used
during the Revolutionary War (e.g., ciphers, secret codes, invisible ink, hidden
letters) and then secure their own methods such as substitution ciphers or
steganography (i.e., hiding messages inside a picture or other data) to
compose a message from either the Continental Army or British Army. (HSS.
8.1)

Alternatively, students could explore functions and inverse functions for
encryption and decryption and consider functions that are complex enough to
keep data secure from their peers. (CA CCSS for Mathematics 8.F.1)

Networks & the
Internet

Cybersecurity Abstraction 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.DA.7 Represent data in
multiple ways.

Computers store data as sequences of 0s and 1s (bits). Software translates to
and from this low-level representation to higher levels that are understandable
by people. Furthermore, higher level data can be represented in multiple
ways, such as the digital display of a color and its corresponding numeric RGB
value, or a bar graph, a pie chart, and table representation of the same data in
a spreadsheet.

For example, students could use a color picker to explore the correspondence
between the digital display or name of a color (high-level representations) and
its RGB value or hex code (low-level representation).

Alternatively, students could translate a word (high-level representation) into
Morse code or its corresponding sequence of ASCII codes (low-level
representation).

Data & Analysis Storage Abstraction 4.4

6-8 6-8.DA.8 Collect data using
computational tools
and transform the
data to make it more
useful.

Data collection has become easier and more ubiquitous. The cleaning of data
is an important transformation for ensuring consistent format, reducing noise
and errors (e.g., removing irrelevant responses in a survey), and/or making it
easier for computers to process. Students build on their ability to organize and
present data visually to support a claim, understanding when and how to
transform data so information can be more easily extracted. Students also
transform data to highlight or expose relationships.

For example, students could use computational tools to collect data from their
peers regarding the percentage of time technology is used for school work and
entertainment, and then create digital displays of their data and findings.
Students could then transform the data to highlight relationships representing
males and females as percentages of a whole instead of as individual counts.
(CA CCSS for Mathematics 6.SP.4, 7.SP.3, 8.SP.1, 8.SP.4)

Alternatively, students could collect data from online forms and surveys, from
a sensor, or by scraping a web page, and then transform the data to expose
relationships. They could highlight the distribution of data (e.g., words on a
web page, readings from a sensor) by giving quantitative measures of center
and variability. (CA CCSS for Mathematics 6.SP.5.c, 7.SP.4)

Data & Analysis Collection
Visualization &
Transformation

Communicating 7.1

6-8 6-8.DA.9 Test and analyze the
effects of changing
variables while
using computational
models.

Variables within a computational model may be changed, in order to alter a
computer simulation or to more accurately represent how various data is
related. Students interact with a given model, make changes to identified
model variables, and observe and reflect upon the results.

For example, students could test a program that makes a robot move on a
track by making changes to variables (e.g., height and angle of track, size and
mass of the robot) and discussing how these changes affect how far the robot
travels. (CA NGSS: MS-PS2-2)

Alternatively, students could test a game simulation and change variables (e.
g., skill of simulated players, nature of opening moves) and analyze how these
changes affect who wins the game. (CA NGSS: MS-ETS1-3)

Additionally, students could modify a model for predicting the likely color of the
next pick from a bag of colored candy and analyze the effects of changing
variables representing the common color ratios in a typical bag of candy. (CA
CCSS for Mathematics 7.SP.7, 8.SP.4)

Data & Analysis Inference & Models Abstraction,
Testing

4.4, 6.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.AP.10 Use flowcharts
and/or pseudocode
to design and
illustrate algorithms
that solve complex
problems.

Complex problems are problems that would be difficult for students to solve
without breaking them down into multiple steps. Flowcharts and pseudocode
are used to design and illustrate the breakdown of steps in an algorithm.
Students design and illustrate algorithms using pseudocode and/or flowcharts
that organize and sequence the breakdown of steps for solving complex
problems.

For example, students might use a flowchart to illustrate an algorithm that
produces a recommendation for purchasing sneakers based on inputs such as
size, colors, brand, comfort, and cost.

Alternatively, students could write pseudocode to express an algorithm for
suggesting their outfit for the day, based on inputs such as the weather, color
preferences, and day of the week.

Algorithms &
Programming

Algorithms Abstraction 4.4, 4.1

6-8 6-8.AP.11 Create clearly
named variables
that store data, and
perform operations
on their contents.

A variable is a container for data, and the name used for accessing the
variable is called the identifier. Students declare, initialize, and update
variables for storing different types of program data (e.g., text, integers) using
names and naming conventions (e.g. camel case) that clearly convey the
purpose of the variable, facilitate debugging, and improve readability.

For example, students could program a quiz game with a score variable (e.g.
quizScore) that is initially set to zero and increases by increments of one each
time the user answers a quiz question correctly and decreases by increments
of one each time a user answers a quiz question incorrectly, resulting in a
score that is either a positive or negative integer. (CA CCSS for Mathematics
6.NS.5)

Alternatively, students could write a program that prompts the user for their
name, stores the user's response in a variable (e.g. userName), and uses this
variable to greet the user by name.

Algorithms &
Programming

Variables Creating 5.1, 5.2

6-8 6-8.AP.12 Design and
iteratively develop
programs that
combine control
structures and use
compound
conditions.

Control structures can be combined in many ways. Nested loops are loops
placed within loops, and nested conditionals allow the result of one conditional
to lead to another. Compound conditions combine two or more conditions in a
logical relationship (e.g., using AND, OR, and NOT). Students appropriately
use control structures to perform repetitive and selection tasks.

For example, when programming an interactive story, students could use a
compound conditional within a loop to unlock a door only if a character has a
key AND is touching the door. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.
8.3)

Alternatively, students could use compound conditionals when writing a
program to test whether two points lie along the line defined by a particular
linear function. (CA CCSS for Mathematics 8.EE.7)

Additionally, students could use nested loops to program a character to do the
"chicken dance" by opening and closing the beak, flapping the wings, shaking
the hips, and clapping four times each; this dance "chorus" is then repeated
several times in its entirety.

Algorithms &
Programming

Control Creating 5.1, 5.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.AP.13 Decompose
problems and
subproblems into
parts to facilitate the
design,
implementation, and
review of programs.

Decomposition facilitates program development by allowing students to focus
on one piece at a time (e.g., getting input from the user, processing the data,
and displaying the result to the user). Decomposition also enables different
students to work on different parts at the same time. Students break down
(decompose) problems into subproblems, which can be further broken down
to smaller parts.

Students could create an arcade game, with a title screen, a game screen,
and a win/lose screen with an option to play the game again. To do this,
students need to identify subproblems that accompany each screen (e.g.,
selecting an avatar goes in the title screen, events for controlling character
action and scoring goes in the game screen, and displaying final and high
score and asking whether to play again goes in the win/lose screen).

Alternatively, students could decompose the problem of calculating and
displaying class grades. Subproblems might include: accept input for students
grades on various assignments, check for invalid grade entries, calculate per
assignment averages, calculate per student averages, and display histograms
of student scores for each assignment. (CA CCSS for Mathematics 6.RP.3c,
6.SP.4, 6.SP.5)

Algorithms &
Programming

Modularity Computational
Problems

3.2

6-8 6-8.AP.14 Create procedures
with parameters to
organize code and
make it easier to
reuse.

Procedures support modularity in developing programs. Parameters can
provide greater flexibility, reusability, and efficient use of resources. Students
create procedures and/or functions that are used multiple times within a
program to repeat groups of instructions. They generalize the procedures
and/or functions by defining parameters that generate different outputs for a
wide range of inputs.

For example, students could create a procedure to draw a circle which
involves many instructions, but all of them can be invoked with one instruction,
such as “drawCircle.” By adding a radius parameter, students can easily draw
circles of different sizes. (CA CCSS for Mathematics 7.G.4)

Alternatively, calculating the area of a regular polygon requires multiple steps.
Students could write a function that accepts the number and length of the
sides as parameters and then calculates the area of the polygon. This function
can then be re-used inside any program to calculate the area of a regular
polygon. (CA CCSS for Mathematics 6.G.1)

Algorithms &
Programming

Modularity Abstraction 4.1, 4.3

6-8 6-8.AP.15 Seek and
incorporate
feedback from team
members and users
to refine a solution
that meets user
needs.

Development teams that employ user-centered design processes create
solutions (e.g., programs and devices) that can have a large societal impact
(e.g., an app that allows people with speech difficulties to allow a smartphone
to clarify their speech). Students begin to seek diverse perspectives
throughout the design process to improve their computational artifacts.
Considerations of the end-user may include usability, accessibility, age-
appropriate content, respectful language, user perspective, pronoun use, or
color contrast.

For example, if students are designing an app to teach their classmates about
recycling, they could first interview or survey their classmates to learn what
their classmates already know about recycling and why they do or do not
recycle. After building a prototype of the app, the students could then test the
app with a sample of their classmates to see if they learned anything from the
app and if they had difficulty using the app (e.g., trouble reading or
understanding text). After gathering interview data, students could refine the
app to meet classmate needs. (CA NGSS: MS-ETS1-4)

Algorithms &
Programming

Program
Development

Collaborating,
Inclusion

2.3, 1.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.AP.16 Incorporate existing
code, media, and
libraries into
original programs,
and give attribution.

Building on the work of others enables students to produce more interesting
and powerful creations. Students use portions of code, algorithms, digital
media, and/or data created by others in their own programs and websites.
They give attribution to the original creators to acknowledge their
contributions.

For example, when creating a side-scrolling game, students may incorporate
portions of code that create a realistic jump movement from another person's
game, and they may also import Creative Commons-licensed images to use in
the background.

Alternatively, when creating a website to demonstrate their knowledge of
historical figures from the Civil War, students may use a professionally-
designed template and public domain images of historical figures. (HSS.
8.10.5)

Additionally, students could import libraries and connect to web application
program interfaces (APIs) to make their own programming processes more
efficient and reduce the number of bugs (e.g., to check whether the user input
is a valid date, to input the current temperature from another city).

Algorithms &
Programming

Program
Development

Abstraction,
Creating,
Communicating

4.2, 5.2, 7.3

6-8 6-8.AP.17 Systematically test
and refine programs
using a range of test
cases.

Use cases and test cases are created to evaluate whether programs function
as intended. At this level, students develop use cases and test cases with
teacher guidance. Testing should become a deliberate process that is more
iterative, systematic, and proactive than at lower levels.

For example, students test programs by considering potential errors, such as
what will happen if a user enters invalid input (e.g., negative numbers and 0
instead of positive numbers).

Alternatively, in an interactive program, students could test that the character
cannot move off of the screen in any direction, cannot move through walls,
and can interact with other characters. They then adjust character behavior as
needed.

Algorithms &
Programming

Program
Development

Testing 6.1

6-8 6-8.AP.18 Distribute tasks and
maintain a project
timeline when
collaboratively
developing
computational
artifacts.

Collaboration is a common and crucial practice in programming development.
Often, many individuals and groups work on the interdependent parts of a
project together. Students assume pre-defined roles within their teams and
manage the project workflow using structured timelines. With teacher
guidance, they begin to create collective goals, expectations, and equitable
workloads.

For example, students could decompose the design stage of a game into
planning the storyboard, flowchart, and different parts of the game mechanics.
They can then distribute tasks and roles among members of the team and
assign deadlines.

Alternatively, students could work as a team to develop a storyboard for an
animation representing a written narrative, and then program the scenes
individually. (CA CCSS for ELA/Literacy W.6.3, W.7.3, W.8.3)

Algorithms &
Programming

Program
Development

Collaborating,
Creating

2.2, 5.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.AP.19 Document programs
in order to make
them easier to use,
read, test, and
debug.

Documentation allows creators, end users, and other developers to more
easily use and understand a program. Students provide documentation for
end users that explains their artifacts and how they function (e.g., project
overview, user instructions). They also include comments within code to
describe portions of their programs and make it easier for themselves and
other developers to use, read, test, and debug.

For example, students could add comments to describe functionality of
different segments of code (e.g., input scores between 0 and 100, check for
invalid input, calculate and display the average of the scores). They could also
communicate the process used by writing design documents, creating
flowcharts, or making presentations. (CA CCSS for ELA/Literacy SL.6.5, SL.
7.5, SL.8.5)

Algorithms &
Programming

Program
Development

Communicating 7.2

6-8 6-8.IC.20 Compare tradeoffs
associated with
computing
technologies that
affect people's
everyday activities
and career options.

Advancements in computer technology are neither wholly positive nor
negative. However, the ways that people use computing technologies have
tradeoffs. Students consider current events related to broad ideas, including
privacy, communication, and automation.

For example, students could compare and contrast the impacts of computing
technologies with the impacts of other systems developed throughout history
such as the Pony Express and US Postal System. (HSS.7.8.4)

Alternatively, students could identify tradeoffs for both personal and
professional uses of a variety of computing technologies. For instance,
driverless cars can increase convenience and reduce accidents, but they may
be susceptible to hacking. The emerging industry will reduce the number of
taxi and shared-ride drivers, but may create more software engineering and
cybersecurity jobs.

Impacts of
Computing

Culture Communicating 7.2

6-8 6-8.IC.21 Discuss issues of
bias and
accessibility in the
design of existing
technologies.

Computing technologies should support users of many backgrounds and
abilities. In order to maximize accessiblity, these differences need to be
addressed by examining diverse populations. With the teacher's guidance,
students test and discuss the usability of various technology tools, such as
apps, games, and devices.

For example, students could discuss the impacts of facial recognition software
that works better for lighter skin tones and recognize that the software was
likely developed with a homogeneous testing group. Students could then
discuss how accessibility could be improved by sampling a more diverse
population. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1, SL.8.1)

Impacts of
Computing

Culture Inclusion 1.2

6-8 6-8.IC.22 Collaborate with
many contributors
when creating a
computational
artifact.

Users have diverse sets of experiences, needs, and wants. These need to be
understood and integrated into the design of computational artifacts. Students
use applications that enable crowdsourcing to gather services, ideas, or
content from a large group of people. At this level, crowdsourcing can be done
at the local level (e.g., classroom, school, or neighborhood) and/or global level
(e.g., age-appropriate online communities).

For example, a group of students could use electronic surveys to solicit input
from their neighborhood regarding an important social or political issue. They
could collaborate with a community artist to combine animations and create a
digital community collage informing the public about various points of view
regarding the topic. (VAPA Visual Art 8.5.2, 8.5.4)

Impacts of
Computing

Social Interactions Collaborating,
Creating

2.4, 5.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

6-8 6-8.IC.23 Compare tradeoffs
associated with
licenses for
computational
artifacts to balance
the protection of the
creators' rights and
the ability for others
to use and modify
the artifacts.

Using and building on the works of others allows people to create meaningful
works and fosters innovation. Copyright is an important law that helps protect
the rights of creators so they receive credit and get paid for their work.
Creative Commons is a kind of copyright that makes it easier for people to
copy, share, and build on creative work, as long as they give credit for it.
There are different kinds of Creative Commons licenses that allow people to
do things such as change, remix, or make money from their work. As creators,
students can pick and choose how they want their work to be used, and then
create a Creative Commons license that they include in their work.

For example, students could create interactive animations to educate others
on bullying or protecting the environment. They then select an appropriate
license to reflect how they want their program to be used by others (e.g., allow
others to use their work and alter it, as long as they do not make a profit from
it). Students use established methods to both protect their artifacts and
attribute use of protected artifacts.

Impacts of
Computing

Safety Law & Ethics Communicating 7.3

6-8 6-8.IC.24 Compare tradeoffs
between allowing
information to be
public and keeping
information private
and secure.

While it is valuable to establish, maintain, and strengthen connections
between people online, security attacks often start with intentionally or
unintentionally providing personal information online. Students identify
situations where the value of keeping information public outweighs privacy
concerns, and vice versa. They also recognize practices such as phishing and
social engineering and explain best practices to defend against them.

For example, students could discuss the benefits of artists and designers
displaying their work online to reach a broader audience. Students could also
compare the tradeoffs of making a shared file accessible to anyone versus
restricting it to specific accounts. (CA CCSS for ELA/Literacy SL.6.1, SL.7.1,
SL.8.1)

Alternatively, students could discuss the benefits and dangers of the increased
accessibility of information available on the internet, and then compare this to
the advantages and disadvantages of the introduction of the printing press in
society. (HSS.7.8.4)

Impacts of
Computing

Safety Law & Ethics Communicating 7.2

9-12 9-12.CS.1 Describe ways in
which abstractions
hide the underlying
implementation
details of computing
systems to simplify
user experiences.

An abstraction is a representation of an idea or phenomenon that hides details
irrelevant to the question at hand. Computing systems, both stand alone and
embedded in products, are often integrated with other systems to simplify user
experiences.

For example, students could identify geolocation hardware embedded in a
smartphone and describe how this simplifies the users experience since the
user does not have to enter her own location on the phone.

Alternatively, students might select an embedded device such as a car stereo,
identify the types of data (e.g., radio station presets, volume level) and
procedures (e.g., increase volume, store/recall saved station, mute) it
includes, and explain how the implementation details are hidden from the
user.

Computing
Systems

Devices Abstraction 4.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.CS.2 Compare levels of
abstraction and
interactions
between application
software, system
software, and
hardware.

At its most basic level, a computer is composed of physical hardware on which
software runs. Multiple layers of software are built upon various layers of
hardware. Layers manage interactions and complexity in the computing
system. System software manages a computing device's resources so that
software can interact with hardware. Application software communicates with
the user and the system software to accomplish its purpose. Students
compare and describe how application software, system software, and
hardware interact.

For example, students could compare how various levels of hardware and
software interact when a picture is to be taken on a smartphone. Systems
software provides low-level commands to operate the camera hardware, but
the application software interacts with system software at a higher level by
requesting a common image file format (e.g., .png) that the system software
provides.

Computing
Systems

Hardware &
Software

Abstraction 4.1

9-12 9-12.CS.3 Develop guidelines
that convey
systematic
troubleshooting
strategies that
others can use to
identify and fix
errors.

Troubleshooting complex problems involves the use of multiple sources when
researching, evaluating, and implementing potential solutions.
Troubleshooting also relies on experience, such as when people recognize
that a problem is similar to one they have seen before and adapt solutions that
have worked in the past.

For example, students could create a list of troubleshooting strategies to
debug network connectivity problems such as checking hardware and
software status and settings, rebooting devices, and checking security
settings.

Alternatively, students could create troubleshooting guidelines for help desk
employees based on commonly observed problems (e.g., problems
connecting a new device to the computer, problems printing from a computer
to a network printer).

Computing
Systems

Troubleshooting Testing 6.2

9-12 9-12.NI.4 Describe issues that
impact network
functionality.

Many different organizations, including educational, governmental, private
businesses, and private households rely on networks to function adequately in
order to engage in online commerce and activity. Quality of Service (QoS)
refers to the capability of a network to provide better service to selected
network traffic over various technologies from the perspective of the
consumer. Students define and discuss performance measures that impact
network functionality, such as latency, bandwidth, throughput, jitter, and error
rate.

For example, students could use online network simulators to explore how
performance measures impact network functionality and describe impacts
when various changes in the network occur.

Alternatively, students could describe how pauses in television interviews
conducted over satellite telephones are impacted by networking factors such
as latency and jitter.

Networks & the
Internet

Network
Communication &
Organization

Abstraction 4.1

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.NI.5 Describe the design
characteristics of
the Internet.

The Internet connects devices and networks all over the world. Large-scale
coordination occurs among many different machines across multiple paths
every time a web page is opened or an image is viewed online. Through the
domain name system (DNS), devices on the Internet can look up Internet
Protocol (IP) addresses, allowing end-to-end communication between devices.
The design decisions that direct the coordination among systems composing
the Internet also allow for scalability and reliability. Students factor historical,
cultural, and economic decisions in their explanations of the Internet.

For example, students could explain how hierarchy in the DNS supports
scalability and reliability.

Alternatively, students could describe how the redundancy of routing between
two nodes on the Internet increases reliability and scales as the Internet
grows.

Networks & the
Internet

Network
Communication &
Organization

Communicating 7.2

9-12 9-12.NI.6 Compare and
contrast security
measures to
address various
security threats.

Network security depends on a combination of hardware, software, and
practices that control access to data and systems. The needs of users and the
sensitivity of data determine the level of security implemented. Potential
security problems, such as denial-of-service attacks, ransomware, viruses,
worms, spyware, and phishing, present threats to sensitive data. Students
compare and contrast different types of security measures based on factors
such as efficiency, feasibility, ethical impacts, usability, and security. At this
level, students are not expected to develop or implement the security
measures that they discuss.

For example, students could review case studies or current events in which
governments or organizations experienced data leaks or data loss as a result
of these types of attacks. Students could provide an analysis of actual
security measures taken comparing to other security measure which may
have led to different outcomes.

Alternatively, students might discuss computer security policies in place at the
local level that present a tradeoff between usability and security, such as a
web filter that prevents access to many educational sites but keeps the
campus network safe.

Networks & the
Internet

Cybersecurity Communication 7.2

9-12 9-12.NI.7 Compare and
contrast
cryptographic
techniques to model
the secure
transmission of
information.

Cryptography is a technique for transforming information on a computer in
such a way that it becomes unreadable by anyone except authorized parties.
Cryptography is useful for supporting secure communication of data across
networks. Examples of cryptographic methods include hashing, symmetric
encryption/decryption (private key), and assymmetric encryption/decryption
(public key/private key). Students use software to encode and decode
messages using cryptographic methods. Students compare the costs and
benefits of using various cryptographic methods. At this level, students are not
expected to perform the mathematical calculations associated with encryption
and decryption.

For example, students could compare and contrast multiple examples of
symmetric cryptographic techiques.

Alternatively, students could compare and contrast symmetric and asymmetric
cryptographic techniques in which they apply for a given scenario.

Networks & the
Internet

Cybersecurity Computational
Problems,
Abstraction

3.3, 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.DA.8 Translate between
different
representations of
data abstractions of
real-world
phenomena, such
as characters,
numbers, and
images.

Computers represent complex real-world concepts such as characters,
numbers, and images through various abstractions. Students translate
between these different levels of data representations.

For example, students could convert an HTML (Hyper Text Markup Language)
tag for red font into RGB (Red Green Blue), HEX (Hexadecimal Color Code),
HSL (Hue Saturation Lightness), RGBA(Red Green Blue Alpha), or HSLA
(Hue Saturation Lightness and Alpha) representations.

Alternatively, students could convert the standard representation of a
character such as ! into ASCII or Unicode.

Data & Analysis Storage Abstraction 4.1

9-12 9-12.DA.9 Describe ​​tradeoffs​
associated with​ ​how​ ​
data elements​ ​are​ ​
organized​​ and ​
stored.

People make choices about how data elements are organized and where data
is stored. These choices affect cost, speed, reliability, accessibility, privacy,
and integrity. Students describe implications for a given data organziation or
storage choice in light of a specific problem.

For example, students might consider the cost, speed, reliability, accessibility,
privacy, and integrity tradeoffs between storing photo data on a mobile device
versus in the cloud.

Alternatively, students might compare the tradeoffs between file size and
image quality of various image file formats and how choice of format may be
infuenced by the device on which it is to be accessed (e.g., smartphone,
computer).

Data & Analysis Storage Computational
Problems

3.3

9-12 9-12.DA.10 Create data
visualizations to
help others better
understand real-
world phenomena.

People transform, generalize, simplify, and present large data sets in different
ways to influence how other people interpret and understand the underlying
information. Students select relevant data from large or complex data sets in
support of a claim or to communicate the information in a more sophisticated
manner. Students use software tools or programming to perform a range of
mathematical operations to transform and analyze data and create powerful
data visualizations (that reveal patterns in the data).

For example, students could create data visualizations to reveal patterns in
voting data by state, gender, political affiliation, or socioeconomic status.

Alternatively, students could use U.S. government data on criticially
endangered animals to visualize population change over time.

Data & Analysis Collection
Visualization &
Transformation

Communicating 5.2

9-12 9-12.DA.11 Refine
computational
models to better
represent the
relationships among
different elements of
data collected from
a phenomenon or
process.

Computational models are used to make predictions about processes or
phenomena based on selected data and features. They allow people to
investigate the relationships among different variables to understand a
system. Predictions are tested to validate models. Students evaluate these
models against real-world observations.

For example, students could use a population model that allows them to
speculate about interactions among different species, evaluate the model
based on data gathered from nature, and then refine the model to reflect more
complex and realistic interactions.

Data & Analysis Inference & Models Abstraction,
Testing

4.4, 6.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.AP.12 Design algorithms
to solve
computational
problems using a
combination of
original and existing
algorithms.

Knowledge of common algorithms improves how people develop software,
secure data, and store information. Some algorithms may be easier to
implement in a particular programming language, work faster, require less
memory to store data, and be applicable in a wider variety of situations than
other algorithms. Algorithms used to search and sort data are common in a
variety of software applications.

For example, students could design an algorithm to calculate and display
various sports statistics and use common sorting or mathematical algorithms
(e.g., average) in the design of the overall algorithm.

Alternatively, students could design an algorithm to implement a game and
use existing randomization algorithms to place pieces randomly in starting
positions or to control the "roll" of a dice or selection of a "card" from a deck.

Algorithms &
Programming

Algorithms Creating,
Abstraction

5.1, 4.2

9-12 9-12.AP.13 Create more
generalized
computational
solutions using
collections instead
of repeatedly using
simple variables.

Computers can automate repetitive tasks with algorithms that use collections
to simplify and generalize computational problems. Students identify common
features in multiple segments of code and substitute a single segment that
uses collections (i.e., arrays, sets, lists) to account for the differences.

For example, students could take a program that inputs students' scores into
multiple variables and modify it to read these scores into a single array of
scores.

Alternatively, instead of writing one procedure to find averages of student
scores and another to find averages of student absences, students could write
a single general average procedure to support both tasks.

Algorithms &
Programming

Variables Abstraction 4.1

9-12 9-12.AP.14 Justify the selection
of specific control
structures by
identifying tradeoffs
associated with
implementation,
readability, and
performance.

The selection of control structures in a given programming language impacts
readability and performance. Readability refers to how clear the program is to
other programmers and can be improved through documentation. Control
structures at this level may include, for example, conditional statements,
loops, event handlers, and recursion. Students justify control structure
selection and tradeoffs in the process of creating their own computational
artifacts. The discussion of performance is limited to a theoretical
understanding of execution time and storage requirements; a quantitative
analysis is not expected.

For example, students could compare the readability and program
performance of iterative and recursive implementations of procedures that
calculate the Fibonacci sequence.

Alternatively, students could compare the readability and performance
tradeoffs of multiple if statements versus a nested if statement.

Algorithms &
Programming

Control Creating 5.2

9-12 9-12.AP.15 Iteratively design
and develop
computational
artifacts for
practical intent,
personal
expression, or to
address a societal
issue by using
events to initiate
instructions.

In this context, relevant computational artifacts can include programs, mobile
apps, or web apps. Events can be user-initiated, such as a button press, or
system-initiated, such as a timer firing.

For example, students might create a tool for drawing on a canvas by first
implementing a button to set the color of the pen.

Alternatively, students might create a game where many events control
instructions executed (e.g., when a score climbs above a threshold, a
congratulatory sound is played; when a user clicks on an object, the object is
loaded into a basket; when a user clicks on an arrow key, the player object is
moved around the screen).

Algorithms &
Programming

Control Creating 5.1, 5.2, 5.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.AP.16 Decompose
problems into
smaller
subproblems
through systematic
analysis, using
constructs such as
procedures,
modules, and/or
classes.

Decomposition enables solutions to complex problems to be designed and
implemented as more manageable subproblems. Students decompose a
given problem into subproblems that can be solved using existing
functionalities, or new functionalities that they design and implement.

For example, students could design a program for supporting soccer coaches
in analyzing their teams' statistics. They decompose the problem in terms of
managing input, analysis, and output. They decompose the data organization
by designing what data will be stored per player, per game, and per team.
Team players may be stored as a collection. Data per team player may
include: number of shots, misses, saves, assists, penalty kicks, blocks, and
corner kicks. Students design methods for supporting various statistical
analyses and display options. Students design output formats for individual
players or coaches.

Algorithms &
Programming

Control Abstraction 3.2

9-12 9-12.AP.17 Create
computational
artifacts using
modular design.

Computational artifacts are created by combining and modifying existing
computational artifacts and/or by developing new artifacts. To reduce
complexity, large programs can be designed as systems of interacting
modules, each with a specific role, coordinating for a common overall purpose.
Students should create computational artifacts with interacting procedures,
modules, and/or libraries.

For example, students could incorporate a physics library into an animation of
bouncing balls.

Alternatively, students could integrate open-source JavaScript libraries to
expand the functionality of a web application.

Additionally, students could create their own game to teach Spanish
vocabulary words using their own modular design (e.g., including methods to:
control scoring, manage wordlists, manage access to different game levels,
take input from the user, etc.).

Algorithms &
Programming

Modularity Abstraction,
Creating

4.3, 5.2

9-12 9-12.AP.18 Systematically
design programs for
broad audiences by
incorporating
feedback from
users.

Programmers use a systematic design and review process to meet the needs
of a broad audience. The process includes planning to meet user needs,
developing software for broad audiences, testing users from a cross-section of
the audience, and refining designs based on feedback.

For example, students could create a user satisfaction survey and brainstorm
distribution methods to collect feedback about a mobile application. After
collecting feedback from a diverse audience, students could incorporate
feedback into their product design.

Alternatively, while developing an e-textiles project with human touch sensors,
students could collect data from peers and identify design changes needed to
improve usability by users of different needs.

Algorithms &
Programming

Program
Development

Inclusion,
Creating

1.1, 5.1

9-12 9-12.AP.19 Explain the
limitations of
licenses that restrict
use of
computational
artifacts when using
resources such as
libraries.

Software licenses include copyright, freeware, and open-source licensing
schemes. Licenses are used to protect the intellectual property of the author
while also defining accessibility of the code. Students consider licensing
implications for their own work, especially when incorporating libraries and
other resources.

For example, students might consider two software libraries that address a
similar need, justifying their choice of one over the other. The choice could be
based upon least restrictive licensing or further protections for their own
intellectual property.

Algorithms &
Programming

Program
Development

Communicating 7.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.AP.20 Iteratively evaluate
and refine a
computational
artifact to enhance
its performance,
reliability, usability,
and accessibility.

Evaluation and refinement of computational artifacts involves measuring,
testing, debugging, and responding to the changing needs and expectations of
users. Aspects that can be evaluated include correctness, performance,
reliability, usability, and accessibility.

For example, after witnessing common errors with user input in a
computational artifact, students could refine the artifact to validate user input
and provide an error message if invalid data is provided.

Alternatively, students could observe a robot in a variety of lighting conditions
to determine whether the code controlling a light sensor should be modified to
make it less sensitive.

Additionally, students could also incorporate feedback from a variety of end
users to help guide the size and placement of menus and buttons in a user
interface.

Algorithms &
Programming

Program
Development

Testing 6.3

9-12 9-12.AP.21 Design and develop
computational
artifacts working in
team roles using
collaborative tools.

Collaborative tools can be as complex as a source code version control
system or as simple as a collaborative word processor. Team roles in pair
programming are driver and navigator but students can take on more
specialized roles in larger teams. Teachers or students should choose
resources that aid collaborative program development as programs grow more
complex.

For example, students might work as a team to develop a mobile application
that addresses a problem relevant to the school or community, using
appropriate tools to support actions such as: establish and manage the project
timeline; design, share, and revise graphical user interface elements;
implement program components, track planned, in-progress, and completed
components, and design and implement user testing.

Algorithms &
Programming

Program
Development

Collaborating 2.4

9-12 9-12.AP.22 Document decisions
made during the
design process
using text, graphics,
presentations,
and/or
demonstrations in
the development of
complex programs.

Complex programs are often iteratively designed as systems of interacting
modules, each with a specific role, coordinating for a common overall purpose.
Comments are included in code both to document the purpose of modules as
well as the implementation details within a module. Together these support
documentation of the design process. Students use resources such as
libraries and tools to edit and manage parts of the program and corresponding
documentation.

For example, during development of a computational artifact students could
comment their code (with date, modification, and rationale), sketch a flowchart
to summarize control flow in a code journal, and share ideas and updates on a
white board. Students may document their logic by explaining the
development process and presenting to the class. The presentation could
include photos of their white board, a video or screencast explaining the
development process, or recorded audio description.

Algorithms &
Programming

Program
Development

Communicating 7.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.IC.23 Evaluate the ways
computing impacts
personal, ethical,
social, economic,
and cultural
practices.

Computing may improve, harm, or maintain practices. An understanding of
how equity deficits, such as minimal exposure to computing, access to
education, and training opportunities, are related to larger, systemic problems
in society enables students to create more meaningful artifacts. Students
illustrate the positive, negative, and/or neutral impacts of computing.

For example, students could evaluate the accessibility of a product for a broad
group of end users, such as people who lack access to broadband or who
have various disabilities. Students could identify potential bias during the
design process and evaluate approaches to maximize accessibility in product
design.

Alternatively, students could evaluate the impact of social media on cultural,
economic, and social practices around the world.

Impacts of
Computing

Culture Computational
Problems,
Inclusion

3.1, 1.2

9-12 9-12.IC.24 Identify impacts of
bias and equity
deficit on design
and implementation
of computational
artifacts and apply
appropriate
processes for
evaluating issues of
bias.

Biases could include incorrect assumptions developers have made about their
users, including minimal exposure to computing, access to education, and
training opportunities. Students identify and use strategies to test and refine
computational artifacts with the goal of reducing bias and equity deficits and
increasing universal access.

For example, students could use a spreadsheet to chart various forms of
equity deficits, and identify solutions in existing software. Students could use
and refine the spreadsheet solutions to create a strategy for methodically
testing software specifically for bias and equity.

Impacts of
Computing

Culture Inclusion 1.2

9-12 9-12.IC.25 Demonstrate ways a
given algorithm
applies to problems
across disciplines.

Students identify how a given algorithm can be applied to real-world problems
in different disciplines.

For example, students could demonstrate how a randomization algorithm can
be used to select participants for a clinical medical trial or to select a flash card
to display on a vocabulary quiz.

Alternatively, students could demonstrate how searching and sorting
algorithms are needed to organize records in manufacturing settings, or to
support doctors queries of patient records, or to help governments manage
support services they provide to their citizens.

Impacts of
Computing

Culture Computational
Problems

3.1

9-12 9-12.IC.26 Study, discuss, and
think critically about
the potential
impacts and
implications of
emerging
technologies on
larger social,
economic, and
political structures,
with evidence from
credible sources.

For example, after studying the rise of artifical intelligence, students create a
cause and effect chart to represent positive and negative impacts of this
technology on society.

Impacts of
Computing

Culture Communciating 7.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 9-12.IC.27 Use collaboration
tools and methods
to increase
connectivity with
people of different
cultures and
careers.

Increased digital connectivity and communication between people across a
variety of cultures and in differing professions has changed the collaborative
nature of personal and professional interaction. Students identify, explain, and
use appropriate collaborative tools.

For example, students could compare ways that various technological
collaboration tools could help a team become more cohesive and then choose
one of these tools to manage their teamwork.

Alternatively, students could use different collaborative tools and methods to
solicit input from not only team members and classmates but also others, such
as participants in online forums or local communities.

Impacts of
Computing

Social Interactions Collaborating 2.4

9-12 9-12.IC.28 Explain the
beneficial and
harmful effects that
intellectual property
laws can have on
innovation.

Laws and ethics govern aspects of computing such as privacy, data, property,
information, and identity. Students explain the beneficial and harmful effects of
intellectual property laws as they relate to potential innovations and
governance.

For example, students could explain how patents protect inventions but may
limit innovation.

Alternatively, students could explain how intellectual property laws requiring
that artists be paid for use of their media might limit the choice of songs
developers can use in their computational artifacts.

Impacts of
Computing

Safety Law & Ethics Communicating 7.3

9-12 9-12.IC.29 Explain the privacy
concerns related to
the collection and
generation of data
through automated
processes.

Data can be collected and aggregated across millions of people, even when
they are not actively engaging with or physically near the data collection
devices. Students recognize automated and non-evident collection of
information and the privacy concerns they raise for individuals.

For example, students could explain the impact on an individual when a social
media site's security settings allows for mining of account information even
when the user is not online.

Alternatively, students could discuss the impact on individuals of using
surveillance video in a store to track customers.

Additionally, students could discuss how road traffic can be monitored to
change signals in real time to improve road efficiency without drivers being
aware and discuss policies for retaining data that identifies drivers' cars and
their behaviors.

Impacts of
Computing

Safety Law & Ethics Communicating 7.2

9-12 9-12.IC.30 Evaluate the social
and economic
implications of
privacy in the
context of safety,
law, or ethics.

Laws govern many aspects of computing, such as privacy, data, property,
information, and identity. International differences in laws and ethics have
implications for computing. Students make and justify claims about potential
and/or actual privacy implications of policies, laws, or ethics and consider the
associated tradeoffs, focusing on society and the economy.

For example, students could explore the case of companies tracking online
shopping behaviors in order to decide which products to target to consumers.
Students could evaluate the ethical and legal dilemmas of collecting such data
without consumer knowledge in order to profit companies.

Alternatively, students could evaluate the implications of net neutrality laws on
society's access to information and on the impacts to businesses of varying
sizes.

Impacts of
Computing

Safety Law & Ethics Communicating 7.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.CS.1 Illustrate ways
computing systems
implement logic
through hardware
components.

Computing systems use processors (e.g., a central processing unit or CPU) to
execute program instructions. Processors are composed of components that
implement the logical or computational operations required by the instructions.
AND, OR, and NOT are examples of logic gates. Adders are examples of
higher-leveled circuits built using low-level logic gates. Students illustrate how
modern computing devices are made up of smaller and simpler components
which implement the logic underlying the functionality of a computer
processor. At this level, knowledge of how logic gates are constructed is not
expected.

For example, students could construct truth tables, draw logic circuit diagrams,
or use an online logic circuit simulator. Students could explore the interaction
of the CPU, RAM, and I/O by labeling a diagram of the von Neumann
architecture.

Alternatively, students could design higher-level circuits using low-level logic
gates (e.g., adders).

Computing
Systems

Devices Communicating,
Abstractions

7.2, 4.4

9-12 Specialty 9-12S.CS.2 Categorize and
describe the
different functions
of operating system
software.

Operating systems (OS) software is the code that manages the computer’s
basic functions. Students describe at a high level the different functions of
different components of operating system software. Examples of functions
could include memory management, data storage/retrieval, processes
management, and access control.

For example, students could use monitoring tools including within an OS to
inspect the services and functions running on a system and create an artifact
to describe the activity that they observed (e.g., when a browser is running
with many tabs open, memory usage is increased). They could also inspect
and describe changes in the activity monitor that occur as different
applications are executing (e.g., processor utilization increases when a new
application is launched).

Computing
Systems

Hardware &
Software

Communicating 7.2

9-12 Specialty 9-12S.NI.3 Examine the
scalability and
reliability of
networks, by
describing the
relationship
between routers,
switches, servers,
topology, and
addressing.

Choice of network topology is determined, in part, by how many devices can
be supported and the character of communication needs between devices.
Each device is assigned an address that uniquely identifies it on the network.
Routers function by comparing addresses to determine how information on the
network should reach its desgination. Switches compare addresses to
determine which computers will receive information. Students explore and
explain how network performance degrades when various factors affect the
network.

For example, students could use online network simulators to describe how
network performance changes when the number of devices increases.

Alternatively, students could visualize and describe changes to the distribution
of network traffic when a router on the network fails.

Networks & the
Internet

Network
Communication &
Organization

Abstractions 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.NI.4 Explain how the
characteristics of
the Internet
influence the
systems developed
on it.

The design of the Internet includes hierarchy and redundancy to help it scale
reliably. An end-to-end architecture means that key functions are placed at
endpoints in the network (i.e., an Internet user's computer and the server
hosting a website) rather than in the middle of the network. Open standards
for transmitting information across the Internet help fuel its growth. This design
philosophy impacts systems and technologies that integrate with the Internet.
Students explain how Internet-based systems depend on these
characteristics.

For example, students could explain how having common, standard protocols
enable products and services from different developers to communicate.

Alternatively, students could describe how the end-to-end architecture and
redundancy in routing enables Internet users to access information and
services even if part of the network is down; the information can still be routed
from one end to another through a different path.

Networks & the
Internet

Network
Communication &
Organization

Communicating 7.2

9-12 Specialty 9-12S.NI.5 Develop solutions to
security threats.

Designing and implementing cybersecurity measures requires knowledge of
software, hardware, and human components and understanding tradeoffs.
Students design solutions to security threats and compare tradeoffs of easier
access and use against the costs of losing information and disrupting services.

For example, students could refine a technology that allows users to use blank
or weak passwords.

Alternatively, students could implement a firewall or proxy protection between
an organization's private local area network (LAN) and the public Internet.

Additionally, students could find and close exploitable threats on an infected
computer in order to protect information.

Networks & the
Internet

Cybersecurity Creating 5.3

9-12 Specialty 9-12S.NI.6 Analyze
cryptographic
techniques to model
the secure
transmission of
information.

Cryptography is essential to many models of cybersecurity. Open standards
help to ensure cryptographic security. Certificate Authorities (CAs) issue digital
certificates that validate the ownership of encrypted keys used in secured
communications across the Internet. Students encode and decode messages
using encryption and decryption methods, and they should understand the
different levels of complexity to hide or secure information.

For example, students could analyze the relative designs of private key vs.
public key encryption techniques and apply the best choice for a particular
scenario.

Alternatively, students could analyze the design of the Diffie-Helman algorithm
to RSA (Rivest–Shamir–Adleman) and apply the best choice for a particular
scenario. They could provide a cost-benefit analysis of runtime and ease of
cracking for various encryption techniques which are commonly used to
secure transmission of data over the Internet.

Networks & the
Internet

Cybersecurity Computational
Problems,
Abstractions

3.3, 4.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.DA.7 Select and use data
collection tools and
techniques to
generate data sets.

Data collection and organization is essential for obtaining new information
insights and revealing new knowledge in our modern world. As computers are
able to process larger sets of data, gathering data in an efficient and reliable
matter remains important. The choice of data collection tools and quality of the
data collected influences how new information, insights, and knowledge will
support claims and be communicated. Students devise a reliable method to
gather information, use software to extract digital data from data sets, and
clean and organize the data in ways that support summaries of information
obtained from the data. At this level, students may, but are not required to,
create their own data collection tools.

For example, students could create a computational artifact that records
information from a sonic distance sensor to monitor the motion of a prototype
vehicle.

Alternatively, students could develop a reliable and practical way to
automatically digitally record the number of animals entering a portion of a
field to graze.

Additionally, students could also find a web site containing data (e.g., race
results for a major marathon), scrape the data from the web site using data
collection tools, and format the data so it can be analyzed.

Data & Analysis Collection
Visualization &
Transformation

Communicating 7.1

9-12 Specialty 9-12S.DA.8 Use data analysis
tools and
techniques to
identify patterns in
data representing
complex systems.

Data analysis tools can be useful for identifying patterns in large amounts of
data in many different fields. Computers can help with the processing of
extremely large sets of data making very complex systems manageable.
Students use computational tools to analyze, summarize, and visualize a large
set of data.

For example, students could analyze a data set containing marathon times
and determine how age, gender, weather, and course features correlate with
running times.

Alternatively, students could analyze a data set of social media interactions to
identify the most influential users and visualize the intersections between
different social groups.

Data & Analysis Collection
Visualization &
Transformation

Communicating,
Abstraction

7.1, 4.1

9-12 Specialty 9-12S.DA.9 Evaluate the ability
of models and
simulations to test
and support the
refinement of
hypotheses.

A model could be implemented as a diagram or a program that represents key
properties of a physical or other system. A simulation is based on a model,
and enables observation of the system as key properties change. Students
explore, explain, and evaluate existing models and simulations, in order to
support the refinement of hypotheses about how the systems work. At this
level, the ability to accurately and completely model and simulate complex
systems is not expected.

For example, a computer model of ants following a path created by other ants
who found food explains the trail-like travel patterns of the insect. Students
could evaluate if the output of the model fits well with their hypothesis that ants
navigate the world through the use of pheromones. They could explain how
the computer model supports this hypothesis and how it might leave out
certain aspects of ant behavior and whether these are important to
understanding ant travel behavior.

Alternatively, students could hypothesize how different ground characteristics
(e.g., soil type, thickness of sediment above bedrock) relate to the severity of
shaking at the surface during an earthquake. They could add or modify input
about ground characteristics into an earthquake simulator, observe the
changed simulation output, and then evaluate their hypotheses.

Data & Analysis Inference & Models Abstraction 4.4

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.AP.10 Describe how
artificial intelligence
drives many
software and
physical systems.

Artificial intelligence is a sub-discipline of computer science that enables
computers to solve problems previously handled by biological systems. There
are many applications of artificial intelligence, including computer vision and
speech recognition. Students research and explain how artificial intelligence
has been employed in a given system. Students are not expected to
implement an artificially intelligent system in order to meet this standard.

For example, students could observe an artificially intelligent system and
notice where its behavior is not human-like, such as when a character in a
videogame makes a mistake that a human is unlikely to make, or when a
computer easily beats even the best human players at a given game.

Alternatively, students could interact with a search engine asking various
questions, and after reading articles on the topic, they could explain how the
computer is able to respond to queries.

Algorithms &
Programming

Algorithms Communicating,
Computational
Problems

7.2, 3.1

9-12 Specialty 9-12S.AP.11 Implement an
algorithm that uses
artificial intelligence
to overcome a
simple challenge.

Artificial intelligence algorithms allow a computer to perceive and move in the
world, use knowledge, and engage in problem solving. Students create a
computational artifact that is able to carry out a simple task commonly
performed by living organisms. Students do not need to realistically simulate
human behavior or solve a complex problem in order to meet this standard.

For example, students could implement an algorithm for playing tic-tac-toe that
would select an appropriate location for the next move.

Alternatively, students could implement an algorithm that allows a solar-
powered robot to move to a sunny location when its batteries are low.

Algorithms &
Programming

Algorithms Creating,
Computational
Problems

5.3, 3.1

9-12 Specialty 9-12S.AP.12 Implement
searching and
sorting algorithms
to solve
computational
problems.

One of the core uses of computers is to store, organize, and retrieve
information when working with large amounts of data. Students create
computational artifacts that use searching and/or sorting algorithms to retrieve,
organize, or store information. Students do not need to select their algorithm
based on efficiency.

For example, students could write a script to sequence their classmates in
order from youngest to oldest.

Alternatively, students could write a program to find certain words within a text
and report their location.

Algorithms &
Programming

Algorithms Abstraction,
Creating

4.2, 5.2

9-12 Specialty 9-12S.AP.13 Evaluate algorithms
in terms of their
efficiency.

Algorithms that perform the same task can be implemented in different ways,
which take different amounts of time to run on a given input set. Algorithms
are commonly evaluated using asymptotic analysis (i.e., “Big O”) which
involves exploration of behavior when the input set grows very large. Students
classify algorithms by the most common time classes (e.g., log n, linear, n log
n, and quadratic or higher).

For example, students could read a given algorithm, identify the control
constructs, and in conjunction with input size, identify the efficiency class of
the algorithm.

Algorithms &
Programming

Algorithms Abstraction 3.3

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.AP.14 Compare and
contrast
fundamental data
structures and their
uses.

Data structures are designed to provide different ways of storing and
manipulating data sets to optimize various aspects of storage or runtime
performance. Choice of data structures is made based on expected data
characteristics and expected program functions. Students = compare and
contrast how basic functions (e.g.., insertion, deletion, and modification) would
differ for common data structures including lists, arrays, stacks, and queues.

For example, students could draw a diagram of how different data structures
change when items are added, deleted, or modified. They could explain
tradeoffs in storage and efficiency issues.

Alternatively, when presented with a description of a program and the
functions it would be most likely to be running, students could list pros and
cons for a specific data structure use in that scenario.

Algorithms &
Programming

Variables Abstraction 4.2

9-12 Specialty 9-12S.AP.15 Demonstrate the
flow of execution of
a recursive
algorithm.

Recursion is a powerful problem solving approach where the problem solution
is built on solutions of smaller instances of the same problem. A base case,
which returns a result without referencing itself, must be defined, otherwise
infinite recursion will occur. Students represent a sequence of calls to a
recursive algorithm and show how the process resolves to a solution.

For example, students could draw a diagram to illustrate flow of execution by
keeping track of parameter and returned values for each recursive call.

Alternatively, students could create a video showing the passing of arguments
as the recursive algorithm runs.

Algorithms &
Programming

Control Computational
Problems,
Communicating

3.2, 7.2

9-12 Specialty 9-12S.AP.16 Analyze a large-
scale computational
problem and identify
generalizable
patterns or problem
components that
can be applied to a
solution.

As students encounter complex, real-world problems that span multiple
disciplines or social systems, they need to be able to decompose problems
and apply already developed code as part of their solutions. Students
decompose complex problems into manageable subproblems that could
potentially be solved with programs or procedures that can be reused or
already exist.

For example, in analyzing an Internet radio app, students could identify that
users need to create an account and enter a password. They could identify a
common application programming interface (API) for checking and displaying
password strength. Additionally, students could recognize that the songs
would need to be sorted by the time last played in order to display the most
recently played songs and identify a common API for sorting dates from most
to least recent.

Alternatively, in analyzing the problem of tracking medical treatment in a
hospital, students could recognize that patient records need to be stored in a
database and identify a database solution to support quick access and
modification of patient records. Additionally, they could recognize that records
in the database need to be stored securely and could identify an encryption
API to support the desired level of privacy.

Algorithms &
Programming

Modularity Computational
Problems,
Abstraction

3.2, 4.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.AP.17 Construct solutions
to problems using
student-created
components, such
as procedures,
modules, and/or
objects.

Programmers often address complex tasks through design and decomposition
using procedures and/or modules. In object-oriented programming languages,
classes can support this decomposition. Students create a computational
artifact that solves a problem through use of procedures, modules, and/or
objects. This problem should be of sufficient complexity to benefit from
decomposition and/or use of objects.

For example, students could write a flashcard program in which each card is
able to show both the question and answer and record user history.

Alternatively, students could create a simulation of an ecosystem in which
sprites carry out behaviors, such as consuming resources.

Algorithms &
Programming

Modularity Abstraction,
Creating

4.3, 5.2

9-12 Specialty 9-12S.AP.18 Demonstrate code
reuse by creating
programming
solutions using
libraries and APIs.

Code reuse is critical both for managing complexity in modern programs, but
also in increasing programming efficiency and reliability by having
programmers reuse code that has been highly vetted and tested. Software
libraries allow developers to integrate common and often complex functionality
without having to reimplement that functionality from scratch. Students
identify, evaluate, and select appropriate application programming interfaces
(APIs) from software libraries to use with a given language and operating
system. They appropriately use resources such as technical documentation,
online forums, and developer communities to learn about libraries and
troubleshoot problems with APIs that they have chosen.

For example, students could import charting and graphing modules to display
data sets, adopt an online service that provides cloud storage and retrieval for
a database used in a multiplayer game, or import location services into an app
that identifies points of interest on a map. Libraries of APIs can be student-
created or publicly available (e.g., common graphics libraries or
map/navigation APIs).

Algorithms &
Programming

Modularity Abstractions,
Creating,
Troubleshooting

4.2, 5.3, 6.2

9-12 Specialty 9-12S.AP.19 Plan and develop
programs for broad
audiences using a
specific software life
cycle process.

Software development processes are used to help manage the design,
development, and product/project management of a software solution. Various
types of processes have been developed over time to meet changing needs in
the software landscape. The systems development life cycle (SDLC), also
referred to as the application development life cycle, is a term used in systems
engineering, information systems, and software engineering to describe a
process for planning, creating, testing, and deploying an information system.
Other examples of common processes could include agile, spiral, or waterfall.
Students develop a program following a specific software life cycle process,
with proper scaffolding from the teacher.

For example, students could work in teams on a common project using the
agile development process, which is based on breaking product development
work into small increments.

Alternatively, students could be guided in implementing sprints to focus work
on daily standup meetings or scrums to support efficient communication.

Algorithms &
Programming

Program
Development

Collaborating,
Creating

2.2, 2.3, 5.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.AP.20 Develop programs
for multiple
computing
platforms.

Humans use computers in various forms in their lives and work. Depending on
the situation, software solutions are more appropriate or valuable when
available on different computational platforms or devices. Students develop
programs for more than one computing platform (e.g. desktop, web, or
mobile).

For example, students could develop a mobile app for a location-aware
software product and a different program that is installed on a computer.

Alternatively, students could create a browser-based product and make it
accessible across multiple platforms or computers (e.g., email).

Algorithms &
Programming

Program
Development

Creating 5.2

9-12 Specialty 9-12S.AP.21 Identify and fix
security issues that
might compromise
computer programs.

Some common forms of security issues arise from specific programming
languages, platforms, or program implementation choices. Students read a
given a piece of code that contains a common security vulnerability, explain
the code's intended function or purpose, provide and explain examples of how
a specific input could exploit that vulnerability (e.g., the program accessing
data or performing in unintended ways), and implement a change in the code
to mitigate this vulnerability.

For example, students could review code that takes a date as input, recognize
that the code doesn't check for appropriate last days of the month, and modify
the code to do that.

Alternatively, students could review code that supports entry of patient data (e.
g., height and weight) and doesn't prompt users to double check unreasonable
values (e.g., height at 6 feet and weight at 20 pounds).

Algorithms &
Programming

Program
Development

Troubleshooting 6.2

9-12 Specialty 9-12S.AP.22 Develop and use a
series of test cases
to verify that a
program performs
according to its
design
specifications.

Testing software is a critically important process. The ability of students to
identify a set of important test cases communicates their understanding of the
design specifications and potential issues due to implementation choices.
Students select and apply their own test cases to cover both general behavior
and the edge cases which show behavior at boundary conditions.

For example, for a program that is supposed to accept test scores in the range
of [0,100], students could develop appropriate tests (e.g, a negative value, 0,
100, and a value above 100).

Alternatively, students developing an app to allow users to create and store
calendar appointments could develop and use a series of test cases for
various scenarios including checking for correct dates, flagging for user
confirmation when a calendar event is very long, checking for correct email
address format for invitees, and checking for appropriate screen display as
users go through the process of adding, editing, and deleting events.

Algorithms &
Programming

Program
Development

Testing 6.1

9-12 Specialty 9-12S.AP.23 Modify an existing
program to add
additional
functionality and
discuss intended
and unintended
implications.

Modularity and code reuse is key in modern software. However, when code is
modified, the programmer should consider relevant situations in which this
code might be used in other places. Students create and document
modifications to existing programs that enhance functionality, and then
identify, document, and correct unintended consequences.

For example, students could take an existing a procedure that calculates the
average of a set of numbers and returns an integer (which lacks precision)
and modify it to return a floating point number instead. The student would
explain how the change might impact multiple scenarios.

Algorithms &
Programming

Program
Development

Creating,
Abstraction

5.3, 4.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.AP.24 Evaluate key
qualities of a
program through a
process such as a
code review.

Code reviews are a common software industry practice and valuable for
developing technical communication skills. Key qualities of code include
correctness, usability, readability, efficiency, and scalability. Students walk
through code they created and explain how it works. Additionally, they follow
along when someone else is explaining their code and ask appropriate
questions.

For example, students could present their code to a group or visually inspect
code in pairs.

Alternatively, in response to another student's presentation, students could
provide feedback including comments on correctness of the code, comments
on how code interacts with code that calls it, and design and documentation
features.

Algorithms &
Programming

Program
Development

Testing 6.3

9-12 Specialty 9-12S.AP.25 Use version control
systems, integrated
development
environments
(IDEs), and
collaborative tools
and practices (e.g.,
code
documentation)
while developing
software within a
group.

Software development is a process that benefits from the use of tools that
manage complexity, iterative development, and collaboration. Large or
complex software projects often require contributions from multiple
developers. Version control systems and other collaborative tools and
practices help coordinate the process and products contributed by individuals
on a development team. An integrated development environment (IDE) is a
program within which a developer implements, compiles or interprets, tests,
debugs, and deploys a software project. Students use common software
development and documentation support tools in the context of a group
software development project. At this level, facility with the full functionality
available in the collaborative tools is not expected.

For example, students could use common version control systems to modify
and improve code or revert to a previous code version.

Alternatively, students could use appropriate IDEs to support more efficient
code design and development.

Additionally, students could use various collaboration, communication, and
code documentation tools designed to support groups engaging in complex
and interrelated work.

Algorithms &
Programming

Program
Development

Collaborating,
Creating

2.4, 5.2

9-12 Specialty 9-12S.AP.26 Compare multiple
programming
languages, and
discuss how their
features make them
suitable for solving
different types of
problems.

Particular problems may be more effectively solved using some programming
languages than other programming languages. Students provide a rationale
for why a specific programming language is better suited for a solving a
particular class of problem.

For example, students could explain how a language with a large library base
can make developing a web application easier.

Alternatively, students could explain how languages that support particular
programming paradigms (e.g., object-oriented or functional) can make
implementation more aligned with design choices.

Additionally, students could discuss how languages that implement garbage
collection are good for simplicity of memory management, but may result in
poor performance characteristics.

Algorithms &
Programming

Program
Development

Communicating 7.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.IC.27 Evaluate
computational
artifacts with regard
to improving their
beneficial effects
and reducing
harmful effects on
society.

People design computational artifacts to help make the lives of humans better.
Students evaluate an artifact and comment on aspects of it which positively or
negatively impact users and give ideas for reducing the possible negative
impacts.

For example, students could discuss how algorithms that screen job
candidates' resumes can cut costs for companies (a beneficial effect) but
introduce or amplify bias in the hiring process (a harmful effect).

Alternatively, students could discuss how turn-by-turn navigation tools can
help drivers avoid traffic and find alternate routes (a beneficial effect), but
sometimes channel large amounts of traffic down small neighborhood streets
(a harmful effect).

Additionally, students could discuss how social media algorithms can help
direct users' attention to interesting content (a beneficial effect), while
simultaneously limiting users' exposure to information that contradicts pre-
existing beliefs (a harmful effect).

Impacts of
Computing

Culture Testing, Inclusion 6.1, 1.2

9-12 Specialty 9-12S.IC.28 Evaluate how
computational
innovations that
have revolutionized
aspects of our
culture might
evolve.

It is important to be able to evaluate current technologies and innovations and
their potential for future impact on society. Students describe how a given
computational innovation might change in the future and impacts these
evolutions could have on society, economy, or culture.

For example, students could consider ways in which computers may support
education (or healthcare) in the future, or how developments in virtual reality
might impact arts and entertainment.

Alternatively, students could consider how autonomous vehicles will affect
individuals' car ownership and car use habits as well as industries that employ
human drivers (e.g., trucking, taxi service).

Impacts of
Computing

Culture Communicating 7.2

9-12 Specialty 9-12S.IC.29 Evaluate the impact
of equity, access,
and influence on the
distribution of
computing
resources in a
global society.

Computers, computation, and technology can help improve the lives of
humans and support positive developments in society, economy, and/or
culture. However, access to such resources is not the same for everyone in
the world. Students define and evaluate ways in which different technologies,
applications, or computational tools might benefit all people in society or might
only benefit those with the greatest access or resources.

For example, students could describe ways in which groups of people benefit,
do not benefit, or could benefit better by access to high-speed Internet
connectivity.

Alternatively, students could describe educational impacts of children not
having access to a computer in their home.

Impacts of
Computing

Culture Inclusion 1.2

California K-12 Computer Science Standards

California K–12 Computer Science Standards
California Department of Education
August 1, 2018

Grade Standard Identifier Standard Descriptive Statement

Framework
Alignment:
Concept

Framework
Alignment:
Subconcept

Framework
Alignment:
Practice(s)

Framework
Alignment: Sub-
practice(s)

9-12 Specialty 9-12S.IC.30 Debate laws and
regulations that
impact the
development and
use of software.

Laws and regulations influence what software gets developed and how society
benefits or does not.

For example, students could debate the pros and cons of changes to
regulations around net neutrality: Many believe that mandating that Internet
service providers (ISPs) maintain net neutrality facilitates competition between
Internet-based content providers and supports consumer choice, but others
believe such regulations represent government overreach.

Alternatively, students could debate the impacts of different copyright rules in
various countries and impacts on economy, society, and culture: Long-lasting
copyrights in the United States enable creators to profit from their works but
also prevent works from entering the public domain where they can be freely
used and adapted to create new works.

Impacts of
Computing

Safety Law & Ethics Communicating 7.2

